Logo Search packages:      
Sourcecode: darkplaces version File versions  Download package

model_brush.c

/*
Copyright (C) 1996-1997 Id Software, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/

#include "quakedef.h"
#include "image.h"
#include "r_shadow.h"
#include "polygon.h"
#include "curves.h"
#include "wad.h"


//cvar_t r_subdivide_size = {CVAR_SAVE, "r_subdivide_size", "128", "how large water polygons should be (smaller values produce more polygons which give better warping effects)"};
cvar_t mod_bsp_portalize = {0, "mod_bsp_portalize", "1", "enables portal generation from BSP tree (may take several seconds per map), used by r_drawportals, r_useportalculling, r_shadow_realtime_world_compileportalculling, sv_cullentities_portal"};
cvar_t r_novis = {0, "r_novis", "0", "draws whole level, see also sv_cullentities_pvs 0"};
cvar_t r_nosurftextures = {0, "r_nosurftextures", "0", "pretends there was no texture lump found in the q1bsp/hlbsp loading (useful for debugging this rare case)"};
cvar_t r_subdivisions_tolerance = {0, "r_subdivisions_tolerance", "4", "maximum error tolerance on curve subdivision for rendering purposes (in other words, the curves will be given as many polygons as necessary to represent curves at this quality)"};
cvar_t r_subdivisions_mintess = {0, "r_subdivisions_mintess", "0", "minimum number of subdivisions (values above 0 will smooth curves that don't need it)"};
cvar_t r_subdivisions_maxtess = {0, "r_subdivisions_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"};
cvar_t r_subdivisions_maxvertices = {0, "r_subdivisions_maxvertices", "65536", "maximum vertices allowed per subdivided curve"};
cvar_t r_subdivisions_collision_tolerance = {0, "r_subdivisions_collision_tolerance", "15", "maximum error tolerance on curve subdivision for collision purposes (usually a larger error tolerance than for rendering)"};
cvar_t r_subdivisions_collision_mintess = {0, "r_subdivisions_collision_mintess", "0", "minimum number of subdivisions (values above 0 will smooth curves that don't need it)"};
cvar_t r_subdivisions_collision_maxtess = {0, "r_subdivisions_collision_maxtess", "1024", "maximum number of subdivisions (prevents curves beyond a certain detail level, limits smoothing)"};
cvar_t r_subdivisions_collision_maxvertices = {0, "r_subdivisions_collision_maxvertices", "4225", "maximum vertices allowed per subdivided curve"};
cvar_t r_trippy = {0, "r_trippy", "0", "easter egg"};
cvar_t mod_noshader_default_offsetmapping = {CVAR_SAVE, "mod_noshader_default_offsetmapping", "1", "use offsetmapping by default on all surfaces that are not using q3 shader files"};
cvar_t mod_q3bsp_curves_collisions = {0, "mod_q3bsp_curves_collisions", "1", "enables collisions with curves (SLOW)"};
cvar_t mod_q3bsp_curves_collisions_stride = {0, "mod_q3bsp_curves_collisions_stride", "16", "collisions against curves: optimize performance by doing a combined collision check for this triangle amount first (-1 avoids any box tests)"};
cvar_t mod_q3bsp_curves_stride = {0, "mod_q3bsp_curves_stride", "16", "particle effect collisions against curves: optimize performance by doing a combined collision check for this triangle amount first (-1 avoids any box tests)"};
cvar_t mod_q3bsp_optimizedtraceline = {0, "mod_q3bsp_optimizedtraceline", "1", "whether to use optimized traceline code for line traces (as opposed to tracebox code)"};
cvar_t mod_q3bsp_debugtracebrush = {0, "mod_q3bsp_debugtracebrush", "0", "selects different tracebrush bsp recursion algorithms (for debugging purposes only)"};
cvar_t mod_q3bsp_lightmapmergepower = {CVAR_SAVE, "mod_q3bsp_lightmapmergepower", "4", "merges the quake3 128x128 lightmap textures into larger lightmap group textures to speed up rendering, 1 = 256x256, 2 = 512x512, 3 = 1024x1024, 4 = 2048x2048, 5 = 4096x4096, ..."};
cvar_t mod_q3bsp_nolightmaps = {CVAR_SAVE, "mod_q3bsp_nolightmaps", "0", "do not load lightmaps in Q3BSP maps (to save video RAM, but be warned: it looks ugly)"};
cvar_t mod_q3bsp_tracelineofsight_brushes = {0, "mod_q3bsp_tracelineofsight_brushes", "0", "enables culling of entities behind detail brushes, curves, etc"};
cvar_t mod_q3shader_default_offsetmapping = {CVAR_SAVE, "mod_q3shader_default_offsetmapping", "1", "use offsetmapping by default on all surfaces that are using q3 shader files"};
cvar_t mod_q3shader_default_polygonfactor = {0, "mod_q3shader_default_polygonfactor", "0", "biases depth values of 'polygonoffset' shaders to prevent z-fighting artifacts"};
cvar_t mod_q3shader_default_polygonoffset = {0, "mod_q3shader_default_polygonoffset", "-2", "biases depth values of 'polygonoffset' shaders to prevent z-fighting artifacts"};

cvar_t mod_q1bsp_polygoncollisions = {0, "mod_q1bsp_polygoncollisions", "0", "disables use of precomputed cliphulls and instead collides with polygons (uses Bounding Interval Hierarchy optimizations)"};
cvar_t mod_collision_bih = {0, "mod_collision_bih", "1", "enables use of generated Bounding Interval Hierarchy tree instead of compiled bsp tree in collision code"};
cvar_t mod_recalculatenodeboxes = {0, "mod_recalculatenodeboxes", "1", "enables use of generated node bounding boxes based on BSP tree portal reconstruction, rather than the node boxes supplied by the map compiler"};

static texture_t mod_q1bsp_texture_solid;
static texture_t mod_q1bsp_texture_sky;
static texture_t mod_q1bsp_texture_lava;
static texture_t mod_q1bsp_texture_slime;
static texture_t mod_q1bsp_texture_water;

void Mod_BrushInit(void)
{
//    Cvar_RegisterVariable(&r_subdivide_size);
      Cvar_RegisterVariable(&mod_bsp_portalize);
      Cvar_RegisterVariable(&r_novis);
      Cvar_RegisterVariable(&r_nosurftextures);
      Cvar_RegisterVariable(&r_subdivisions_tolerance);
      Cvar_RegisterVariable(&r_subdivisions_mintess);
      Cvar_RegisterVariable(&r_subdivisions_maxtess);
      Cvar_RegisterVariable(&r_subdivisions_maxvertices);
      Cvar_RegisterVariable(&r_subdivisions_collision_tolerance);
      Cvar_RegisterVariable(&r_subdivisions_collision_mintess);
      Cvar_RegisterVariable(&r_subdivisions_collision_maxtess);
      Cvar_RegisterVariable(&r_subdivisions_collision_maxvertices);
      Cvar_RegisterVariable(&r_trippy);
      Cvar_RegisterVariable(&mod_noshader_default_offsetmapping);
      Cvar_RegisterVariable(&mod_q3bsp_curves_collisions);
      Cvar_RegisterVariable(&mod_q3bsp_curves_collisions_stride);
      Cvar_RegisterVariable(&mod_q3bsp_curves_stride);
      Cvar_RegisterVariable(&mod_q3bsp_optimizedtraceline);
      Cvar_RegisterVariable(&mod_q3bsp_debugtracebrush);
      Cvar_RegisterVariable(&mod_q3bsp_lightmapmergepower);
      Cvar_RegisterVariable(&mod_q3bsp_nolightmaps);
      Cvar_RegisterVariable(&mod_q3bsp_tracelineofsight_brushes);
      Cvar_RegisterVariable(&mod_q3shader_default_offsetmapping);
      Cvar_RegisterVariable(&mod_q3shader_default_polygonfactor);
      Cvar_RegisterVariable(&mod_q3shader_default_polygonoffset);
      Cvar_RegisterVariable(&mod_q1bsp_polygoncollisions);
      Cvar_RegisterVariable(&mod_collision_bih);
      Cvar_RegisterVariable(&mod_recalculatenodeboxes);

      memset(&mod_q1bsp_texture_solid, 0, sizeof(mod_q1bsp_texture_solid));
      strlcpy(mod_q1bsp_texture_solid.name, "solid" , sizeof(mod_q1bsp_texture_solid.name));
      mod_q1bsp_texture_solid.surfaceflags = 0;
      mod_q1bsp_texture_solid.supercontents = SUPERCONTENTS_SOLID;

      mod_q1bsp_texture_sky = mod_q1bsp_texture_solid;
      strlcpy(mod_q1bsp_texture_sky.name, "sky", sizeof(mod_q1bsp_texture_sky.name));
      mod_q1bsp_texture_sky.surfaceflags = Q3SURFACEFLAG_SKY | Q3SURFACEFLAG_NOIMPACT | Q3SURFACEFLAG_NOMARKS | Q3SURFACEFLAG_NODLIGHT | Q3SURFACEFLAG_NOLIGHTMAP;
      mod_q1bsp_texture_sky.supercontents = SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP;

      mod_q1bsp_texture_lava = mod_q1bsp_texture_solid;
      strlcpy(mod_q1bsp_texture_lava.name, "*lava", sizeof(mod_q1bsp_texture_lava.name));
      mod_q1bsp_texture_lava.surfaceflags = Q3SURFACEFLAG_NOMARKS;
      mod_q1bsp_texture_lava.supercontents = SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP;

      mod_q1bsp_texture_slime = mod_q1bsp_texture_solid;
      strlcpy(mod_q1bsp_texture_slime.name, "*slime", sizeof(mod_q1bsp_texture_slime.name));
      mod_q1bsp_texture_slime.surfaceflags = Q3SURFACEFLAG_NOMARKS;
      mod_q1bsp_texture_slime.supercontents = SUPERCONTENTS_SLIME;

      mod_q1bsp_texture_water = mod_q1bsp_texture_solid;
      strlcpy(mod_q1bsp_texture_water.name, "*water", sizeof(mod_q1bsp_texture_water.name));
      mod_q1bsp_texture_water.surfaceflags = Q3SURFACEFLAG_NOMARKS;
      mod_q1bsp_texture_water.supercontents = SUPERCONTENTS_WATER;
}

static mleaf_t *Mod_Q1BSP_PointInLeaf(dp_model_t *model, const vec3_t p)
{
      mnode_t *node;

      if (model == NULL)
            return NULL;

      // LordHavoc: modified to start at first clip node,
      // in other words: first node of the (sub)model
      node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
      while (node->plane)
            node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist];

      return (mleaf_t *)node;
}

static void Mod_Q1BSP_AmbientSoundLevelsForPoint(dp_model_t *model, const vec3_t p, unsigned char *out, int outsize)
{
      int i;
      mleaf_t *leaf;
      leaf = Mod_Q1BSP_PointInLeaf(model, p);
      if (leaf)
      {
            i = min(outsize, (int)sizeof(leaf->ambient_sound_level));
            if (i)
            {
                  memcpy(out, leaf->ambient_sound_level, i);
                  out += i;
                  outsize -= i;
            }
      }
      if (outsize)
            memset(out, 0, outsize);
}

static int Mod_Q1BSP_FindBoxClusters(dp_model_t *model, const vec3_t mins, const vec3_t maxs, int maxclusters, int *clusterlist)
{
      int numclusters = 0;
      int nodestackindex = 0;
      mnode_t *node, *nodestack[1024];
      if (!model->brush.num_pvsclusters)
            return -1;
      node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
      for (;;)
      {
#if 1
            if (node->plane)
            {
                  // node - recurse down the BSP tree
                  int sides = BoxOnPlaneSide(mins, maxs, node->plane);
                  if (sides < 3)
                  {
                        if (sides == 0)
                              return -1; // ERROR: NAN bounding box!
                        // box is on one side of plane, take that path
                        node = node->children[sides-1];
                  }
                  else
                  {
                        // box crosses plane, take one path and remember the other
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                  }
                  continue;
            }
            else
            {
                  // leaf - add clusterindex to list
                  if (numclusters < maxclusters)
                        clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex;
                  numclusters++;
            }
#else
            if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
            {
                  if (node->plane)
                  {
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                        continue;
                  }
                  else
                  {
                        // leaf - add clusterindex to list
                        if (numclusters < maxclusters)
                              clusterlist[numclusters] = ((mleaf_t *)node)->clusterindex;
                        numclusters++;
                  }
            }
#endif
            // try another path we didn't take earlier
            if (nodestackindex == 0)
                  break;
            node = nodestack[--nodestackindex];
      }
      // return number of clusters found (even if more than the maxclusters)
      return numclusters;
}

static int Mod_Q1BSP_BoxTouchingPVS(dp_model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs)
{
      int nodestackindex = 0;
      mnode_t *node, *nodestack[1024];
      if (!model->brush.num_pvsclusters)
            return true;
      node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
      for (;;)
      {
#if 1
            if (node->plane)
            {
                  // node - recurse down the BSP tree
                  int sides = BoxOnPlaneSide(mins, maxs, node->plane);
                  if (sides < 3)
                  {
                        if (sides == 0)
                              return -1; // ERROR: NAN bounding box!
                        // box is on one side of plane, take that path
                        node = node->children[sides-1];
                  }
                  else
                  {
                        // box crosses plane, take one path and remember the other
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                  }
                  continue;
            }
            else
            {
                  // leaf - check cluster bit
                  int clusterindex = ((mleaf_t *)node)->clusterindex;
                  if (CHECKPVSBIT(pvs, clusterindex))
                  {
                        // it is visible, return immediately with the news
                        return true;
                  }
            }
#else
            if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
            {
                  if (node->plane)
                  {
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                        continue;
                  }
                  else
                  {
                        // leaf - check cluster bit
                        int clusterindex = ((mleaf_t *)node)->clusterindex;
                        if (CHECKPVSBIT(pvs, clusterindex))
                        {
                              // it is visible, return immediately with the news
                              return true;
                        }
                  }
            }
#endif
            // nothing to see here, try another path we didn't take earlier
            if (nodestackindex == 0)
                  break;
            node = nodestack[--nodestackindex];
      }
      // it is not visible
      return false;
}

static int Mod_Q1BSP_BoxTouchingLeafPVS(dp_model_t *model, const unsigned char *pvs, const vec3_t mins, const vec3_t maxs)
{
      int nodestackindex = 0;
      mnode_t *node, *nodestack[1024];
      if (!model->brush.num_leafs)
            return true;
      node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
      for (;;)
      {
#if 1
            if (node->plane)
            {
                  // node - recurse down the BSP tree
                  int sides = BoxOnPlaneSide(mins, maxs, node->plane);
                  if (sides < 3)
                  {
                        if (sides == 0)
                              return -1; // ERROR: NAN bounding box!
                        // box is on one side of plane, take that path
                        node = node->children[sides-1];
                  }
                  else
                  {
                        // box crosses plane, take one path and remember the other
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                  }
                  continue;
            }
            else
            {
                  // leaf - check cluster bit
                  int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs;
                  if (CHECKPVSBIT(pvs, clusterindex))
                  {
                        // it is visible, return immediately with the news
                        return true;
                  }
            }
#else
            if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
            {
                  if (node->plane)
                  {
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                        continue;
                  }
                  else
                  {
                        // leaf - check cluster bit
                        int clusterindex = ((mleaf_t *)node) - model->brush.data_leafs;
                        if (CHECKPVSBIT(pvs, clusterindex))
                        {
                              // it is visible, return immediately with the news
                              return true;
                        }
                  }
            }
#endif
            // nothing to see here, try another path we didn't take earlier
            if (nodestackindex == 0)
                  break;
            node = nodestack[--nodestackindex];
      }
      // it is not visible
      return false;
}

static int Mod_Q1BSP_BoxTouchingVisibleLeafs(dp_model_t *model, const unsigned char *visibleleafs, const vec3_t mins, const vec3_t maxs)
{
      int nodestackindex = 0;
      mnode_t *node, *nodestack[1024];
      if (!model->brush.num_leafs)
            return true;
      node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
      for (;;)
      {
#if 1
            if (node->plane)
            {
                  // node - recurse down the BSP tree
                  int sides = BoxOnPlaneSide(mins, maxs, node->plane);
                  if (sides < 3)
                  {
                        if (sides == 0)
                              return -1; // ERROR: NAN bounding box!
                        // box is on one side of plane, take that path
                        node = node->children[sides-1];
                  }
                  else
                  {
                        // box crosses plane, take one path and remember the other
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                  }
                  continue;
            }
            else
            {
                  // leaf - check if it is visible
                  if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs])
                  {
                        // it is visible, return immediately with the news
                        return true;
                  }
            }
#else
            if (BoxesOverlap(mins, maxs, node->mins, node->maxs))
            {
                  if (node->plane)
                  {
                        if (nodestackindex < 1024)
                              nodestack[nodestackindex++] = node->children[0];
                        node = node->children[1];
                        continue;
                  }
                  else
                  {
                        // leaf - check if it is visible
                        if (visibleleafs[(mleaf_t *)node - model->brush.data_leafs])
                        {
                              // it is visible, return immediately with the news
                              return true;
                        }
                  }
            }
#endif
            // nothing to see here, try another path we didn't take earlier
            if (nodestackindex == 0)
                  break;
            node = nodestack[--nodestackindex];
      }
      // it is not visible
      return false;
}

00434 typedef struct findnonsolidlocationinfo_s
{
      vec3_t center;
      vec3_t absmin, absmax;
      vec_t radius;
      vec3_t nudge;
      vec_t bestdist;
      dp_model_t *model;
}
findnonsolidlocationinfo_t;

static void Mod_Q1BSP_FindNonSolidLocation_r_Triangle(findnonsolidlocationinfo_t *info, msurface_t *surface, int k)
{
      int i, *tri;
      float dist, f, vert[3][3], edge[3][3], facenormal[3], edgenormal[3][3], point[3];

      tri = (info->model->surfmesh.data_element3i + 3 * surface->num_firsttriangle) + k * 3;
      VectorCopy((info->model->surfmesh.data_vertex3f + tri[0] * 3), vert[0]);
      VectorCopy((info->model->surfmesh.data_vertex3f + tri[1] * 3), vert[1]);
      VectorCopy((info->model->surfmesh.data_vertex3f + tri[2] * 3), vert[2]);
      VectorSubtract(vert[1], vert[0], edge[0]);
      VectorSubtract(vert[2], vert[1], edge[1]);
      CrossProduct(edge[1], edge[0], facenormal);
      if (facenormal[0] || facenormal[1] || facenormal[2])
      {
            VectorNormalize(facenormal);
            f = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal);
            if (f <= info->bestdist && f >= -info->bestdist)
            {
                  VectorSubtract(vert[0], vert[2], edge[2]);
                  VectorNormalize(edge[0]);
                  VectorNormalize(edge[1]);
                  VectorNormalize(edge[2]);
                  CrossProduct(facenormal, edge[0], edgenormal[0]);
                  CrossProduct(facenormal, edge[1], edgenormal[1]);
                  CrossProduct(facenormal, edge[2], edgenormal[2]);
                  // face distance
                  if (DotProduct(info->center, edgenormal[0]) < DotProduct(vert[0], edgenormal[0])
                              && DotProduct(info->center, edgenormal[1]) < DotProduct(vert[1], edgenormal[1])
                              && DotProduct(info->center, edgenormal[2]) < DotProduct(vert[2], edgenormal[2]))
                  {
                        // we got lucky, the center is within the face
                        dist = DotProduct(info->center, facenormal) - DotProduct(vert[0], facenormal);
                        if (dist < 0)
                        {
                              dist = -dist;
                              if (info->bestdist > dist)
                              {
                                    info->bestdist = dist;
                                    VectorScale(facenormal, (info->radius - -dist), info->nudge);
                              }
                        }
                        else
                        {
                              if (info->bestdist > dist)
                              {
                                    info->bestdist = dist;
                                    VectorScale(facenormal, (info->radius - dist), info->nudge);
                              }
                        }
                  }
                  else
                  {
                        // check which edge or vertex the center is nearest
                        for (i = 0;i < 3;i++)
                        {
                              f = DotProduct(info->center, edge[i]);
                              if (f >= DotProduct(vert[0], edge[i])
                                          && f <= DotProduct(vert[1], edge[i]))
                              {
                                    // on edge
                                    VectorMA(info->center, -f, edge[i], point);
                                    dist = sqrt(DotProduct(point, point));
                                    if (info->bestdist > dist)
                                    {
                                          info->bestdist = dist;
                                          VectorScale(point, (info->radius / dist), info->nudge);
                                    }
                                    // skip both vertex checks
                                    // (both are further away than this edge)
                                    i++;
                              }
                              else
                              {
                                    // not on edge, check first vertex of edge
                                    VectorSubtract(info->center, vert[i], point);
                                    dist = sqrt(DotProduct(point, point));
                                    if (info->bestdist > dist)
                                    {
                                          info->bestdist = dist;
                                          VectorScale(point, (info->radius / dist), info->nudge);
                                    }
                              }
                        }
                  }
            }
      }
}

static void Mod_Q1BSP_FindNonSolidLocation_r_Leaf(findnonsolidlocationinfo_t *info, mleaf_t *leaf)
{
      int surfacenum, k, *mark;
      msurface_t *surface;
      for (surfacenum = 0, mark = leaf->firstleafsurface;surfacenum < leaf->numleafsurfaces;surfacenum++, mark++)
      {
            surface = info->model->data_surfaces + *mark;
            if (surface->texture->supercontents & SUPERCONTENTS_SOLID)
            {
                  if(surface->deprecatedq3num_bboxstride > 0)
                  {
                        int i, cnt, tri;
                        cnt = (surface->num_triangles + surface->deprecatedq3num_bboxstride - 1) / surface->deprecatedq3num_bboxstride;
                        for(i = 0; i < cnt; ++i)
                        {
                              if(BoxesOverlap(surface->deprecatedq3data_bbox6f + i * 6, surface->deprecatedq3data_bbox6f + i * 6 + 3, info->absmin, info->absmax))
                              {
                                    for(k = 0; k < surface->deprecatedq3num_bboxstride; ++k)
                                    {
                                          tri = i * surface->deprecatedq3num_bboxstride + k;
                                          if(tri >= surface->num_triangles)
                                                break;
                                          Mod_Q1BSP_FindNonSolidLocation_r_Triangle(info, surface, tri);
                                    }
                              }
                        }
                  }
                  else
                  {
                        for (k = 0;k < surface->num_triangles;k++)
                        {
                              Mod_Q1BSP_FindNonSolidLocation_r_Triangle(info, surface, k);
                        }
                  }
            }
      }
}

static void Mod_Q1BSP_FindNonSolidLocation_r(findnonsolidlocationinfo_t *info, mnode_t *node)
{
      if (node->plane)
      {
            float f = PlaneDiff(info->center, node->plane);
            if (f >= -info->bestdist)
                  Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[0]);
            if (f <= info->bestdist)
                  Mod_Q1BSP_FindNonSolidLocation_r(info, node->children[1]);
      }
      else
      {
            if (((mleaf_t *)node)->numleafsurfaces)
                  Mod_Q1BSP_FindNonSolidLocation_r_Leaf(info, (mleaf_t *)node);
      }
}

static void Mod_Q1BSP_FindNonSolidLocation(dp_model_t *model, const vec3_t in, vec3_t out, float radius)
{
      int i;
      findnonsolidlocationinfo_t info;
      if (model == NULL)
      {
            VectorCopy(in, out);
            return;
      }
      VectorCopy(in, info.center);
      info.radius = radius;
      info.model = model;
      i = 0;
      do
      {
            VectorClear(info.nudge);
            info.bestdist = radius;
            VectorCopy(info.center, info.absmin);
            VectorCopy(info.center, info.absmax);
            info.absmin[0] -= info.radius + 1;
            info.absmin[1] -= info.radius + 1;
            info.absmin[2] -= info.radius + 1;
            info.absmax[0] += info.radius + 1;
            info.absmax[1] += info.radius + 1;
            info.absmax[2] += info.radius + 1;
            Mod_Q1BSP_FindNonSolidLocation_r(&info, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode);
            VectorAdd(info.center, info.nudge, info.center);
      }
      while (info.bestdist < radius && ++i < 10);
      VectorCopy(info.center, out);
}

int Mod_Q1BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents)
{
      switch(nativecontents)
      {
            case CONTENTS_EMPTY:
                  return 0;
            case CONTENTS_SOLID:
                  return SUPERCONTENTS_SOLID | SUPERCONTENTS_OPAQUE;
            case CONTENTS_WATER:
                  return SUPERCONTENTS_WATER;
            case CONTENTS_SLIME:
                  return SUPERCONTENTS_SLIME;
            case CONTENTS_LAVA:
                  return SUPERCONTENTS_LAVA | SUPERCONTENTS_NODROP;
            case CONTENTS_SKY:
                  return SUPERCONTENTS_SKY | SUPERCONTENTS_NODROP | SUPERCONTENTS_OPAQUE; // to match behaviour of Q3 maps, let sky count as opaque
      }
      return 0;
}

int Mod_Q1BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents)
{
      if (supercontents & (SUPERCONTENTS_SOLID | SUPERCONTENTS_BODY))
            return CONTENTS_SOLID;
      if (supercontents & SUPERCONTENTS_SKY)
            return CONTENTS_SKY;
      if (supercontents & SUPERCONTENTS_LAVA)
            return CONTENTS_LAVA;
      if (supercontents & SUPERCONTENTS_SLIME)
            return CONTENTS_SLIME;
      if (supercontents & SUPERCONTENTS_WATER)
            return CONTENTS_WATER;
      return CONTENTS_EMPTY;
}

00655 typedef struct RecursiveHullCheckTraceInfo_s
{
      // the hull we're tracing through
      const hull_t *hull;

      // the trace structure to fill in
      trace_t *trace;

      // start, end, and end - start (in model space)
      double start[3];
      double end[3];
      double dist[3];
}
RecursiveHullCheckTraceInfo_t;

// 1/32 epsilon to keep floating point happy
#define DIST_EPSILON (0.03125)

#define HULLCHECKSTATE_EMPTY 0
#define HULLCHECKSTATE_SOLID 1
#define HULLCHECKSTATE_DONE 2

extern cvar_t collision_prefernudgedfraction;
static int Mod_Q1BSP_RecursiveHullCheck(RecursiveHullCheckTraceInfo_t *t, int num, double p1f, double p2f, double p1[3], double p2[3])
{
      // status variables, these don't need to be saved on the stack when
      // recursing...  but are because this should be thread-safe
      // (note: tracing against a bbox is not thread-safe, yet)
      int ret;
      mplane_t *plane;
      double t1, t2;

      // variables that need to be stored on the stack when recursing
      mclipnode_t *node;
      int side;
      double midf, mid[3];

      // LordHavoc: a goto!  everyone flee in terror... :)
loc0:
      // check for empty
      if (num < 0)
      {
            num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
            if (!t->trace->startfound)
            {
                  t->trace->startfound = true;
                  t->trace->startsupercontents |= num;
            }
            if (num & SUPERCONTENTS_LIQUIDSMASK)
                  t->trace->inwater = true;
            if (num == 0)
                  t->trace->inopen = true;
            if (num & SUPERCONTENTS_SOLID)
                  t->trace->hittexture = &mod_q1bsp_texture_solid;
            else if (num & SUPERCONTENTS_SKY)
                  t->trace->hittexture = &mod_q1bsp_texture_sky;
            else if (num & SUPERCONTENTS_LAVA)
                  t->trace->hittexture = &mod_q1bsp_texture_lava;
            else if (num & SUPERCONTENTS_SLIME)
                  t->trace->hittexture = &mod_q1bsp_texture_slime;
            else
                  t->trace->hittexture = &mod_q1bsp_texture_water;
            t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags;
            t->trace->hitsupercontents = num;
            if (num & t->trace->hitsupercontentsmask)
            {
                  // if the first leaf is solid, set startsolid
                  if (t->trace->allsolid)
                        t->trace->startsolid = true;
#if COLLISIONPARANOID >= 3
                  Con_Print("S");
#endif
                  return HULLCHECKSTATE_SOLID;
            }
            else
            {
                  t->trace->allsolid = false;
#if COLLISIONPARANOID >= 3
                  Con_Print("E");
#endif
                  return HULLCHECKSTATE_EMPTY;
            }
      }

      // find the point distances
      node = t->hull->clipnodes + num;

      plane = t->hull->planes + node->planenum;
      if (plane->type < 3)
      {
            t1 = p1[plane->type] - plane->dist;
            t2 = p2[plane->type] - plane->dist;
      }
      else
      {
            t1 = DotProduct (plane->normal, p1) - plane->dist;
            t2 = DotProduct (plane->normal, p2) - plane->dist;
      }

      if (t1 < 0)
      {
            if (t2 < 0)
            {
#if COLLISIONPARANOID >= 3
                  Con_Print("<");
#endif
                  num = node->children[1];
                  goto loc0;
            }
            side = 1;
      }
      else
      {
            if (t2 >= 0)
            {
#if COLLISIONPARANOID >= 3
                  Con_Print(">");
#endif
                  num = node->children[0];
                  goto loc0;
            }
            side = 0;
      }

      // the line intersects, find intersection point
      // LordHavoc: this uses the original trace for maximum accuracy
#if COLLISIONPARANOID >= 3
      Con_Print("M");
#endif
      if (plane->type < 3)
      {
            t1 = t->start[plane->type] - plane->dist;
            t2 = t->end[plane->type] - plane->dist;
      }
      else
      {
            t1 = DotProduct (plane->normal, t->start) - plane->dist;
            t2 = DotProduct (plane->normal, t->end) - plane->dist;
      }

      midf = t1 / (t1 - t2);
      midf = bound(p1f, midf, p2f);
      VectorMA(t->start, midf, t->dist, mid);

      // recurse both sides, front side first
      ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side], p1f, midf, p1, mid);
      // if this side is not empty, return what it is (solid or done)
      if (ret != HULLCHECKSTATE_EMPTY)
            return ret;

      ret = Mod_Q1BSP_RecursiveHullCheck(t, node->children[side ^ 1], midf, p2f, mid, p2);
      // if other side is not solid, return what it is (empty or done)
      if (ret != HULLCHECKSTATE_SOLID)
            return ret;

      // front is air and back is solid, this is the impact point...
      if (side)
      {
            t->trace->plane.dist = -plane->dist;
            VectorNegate (plane->normal, t->trace->plane.normal);
      }
      else
      {
            t->trace->plane.dist = plane->dist;
            VectorCopy (plane->normal, t->trace->plane.normal);
      }

      // calculate the true fraction
      t1 = DotProduct(t->trace->plane.normal, t->start) - t->trace->plane.dist;
      t2 = DotProduct(t->trace->plane.normal, t->end) - t->trace->plane.dist;
      midf = t1 / (t1 - t2);
      t->trace->realfraction = bound(0, midf, 1);

      // calculate the return fraction which is nudged off the surface a bit
      midf = (t1 - DIST_EPSILON) / (t1 - t2);
      t->trace->fraction = bound(0, midf, 1);

      if (collision_prefernudgedfraction.integer)
            t->trace->realfraction = t->trace->fraction;

#if COLLISIONPARANOID >= 3
      Con_Print("D");
#endif
      return HULLCHECKSTATE_DONE;
}

//#if COLLISIONPARANOID < 2
static int Mod_Q1BSP_RecursiveHullCheckPoint(RecursiveHullCheckTraceInfo_t *t, int num)
{
      mplane_t *plane;
      mclipnode_t *nodes = t->hull->clipnodes;
      mplane_t *planes = t->hull->planes;
      vec3_t point;
      VectorCopy(t->start, point);
      while (num >= 0)
      {
            plane = planes + nodes[num].planenum;
            num = nodes[num].children[(plane->type < 3 ? point[plane->type] : DotProduct(plane->normal, point)) < plane->dist];
      }
      num = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
      t->trace->startsupercontents |= num;
      if (num & SUPERCONTENTS_LIQUIDSMASK)
            t->trace->inwater = true;
      if (num == 0)
            t->trace->inopen = true;
      if (num & t->trace->hitsupercontentsmask)
      {
            t->trace->allsolid = t->trace->startsolid = true;
            return HULLCHECKSTATE_SOLID;
      }
      else
      {
            t->trace->allsolid = t->trace->startsolid = false;
            return HULLCHECKSTATE_EMPTY;
      }
}
//#endif

static void Mod_Q1BSP_TracePoint(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
      RecursiveHullCheckTraceInfo_t rhc;

      memset(&rhc, 0, sizeof(rhc));
      memset(trace, 0, sizeof(trace_t));
      rhc.trace = trace;
      rhc.trace->fraction = 1;
      rhc.trace->realfraction = 1;
      rhc.trace->allsolid = true;
      rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
      VectorCopy(start, rhc.start);
      VectorCopy(start, rhc.end);
      Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
}

static void Mod_Q1BSP_TraceLine(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
      RecursiveHullCheckTraceInfo_t rhc;

      if (VectorCompare(start, end))
      {
            Mod_Q1BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
            return;
      }

      memset(&rhc, 0, sizeof(rhc));
      memset(trace, 0, sizeof(trace_t));
      rhc.trace = trace;
      rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
      rhc.trace->fraction = 1;
      rhc.trace->realfraction = 1;
      rhc.trace->allsolid = true;
      rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
      VectorCopy(start, rhc.start);
      VectorCopy(end, rhc.end);
      VectorSubtract(rhc.end, rhc.start, rhc.dist);
#if COLLISIONPARANOID >= 2
      Con_Printf("t(%f %f %f,%f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2]);
      Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
      {

            double test[3];
            trace_t testtrace;
            VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test);
            memset(&testtrace, 0, sizeof(trace_t));
            rhc.trace = &testtrace;
            rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
            rhc.trace->fraction = 1;
            rhc.trace->realfraction = 1;
            rhc.trace->allsolid = true;
            VectorCopy(test, rhc.start);
            VectorCopy(test, rhc.end);
            VectorClear(rhc.dist);
            Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
            //Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test);
            if (!trace->startsolid && testtrace.startsolid)
                  Con_Printf(" - ended in solid!\n");
      }
      Con_Print("\n");
#else
      if (VectorLength2(rhc.dist))
            Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
      else
            Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
#endif
}

static void Mod_Q1BSP_TraceBox(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
{
      // this function currently only supports same size start and end
      double boxsize[3];
      RecursiveHullCheckTraceInfo_t rhc;

      if (VectorCompare(boxmins, boxmaxs))
      {
            if (VectorCompare(start, end))
                  Mod_Q1BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
            else
                  Mod_Q1BSP_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
            return;
      }

      memset(&rhc, 0, sizeof(rhc));
      memset(trace, 0, sizeof(trace_t));
      rhc.trace = trace;
      rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
      rhc.trace->fraction = 1;
      rhc.trace->realfraction = 1;
      rhc.trace->allsolid = true;
      VectorSubtract(boxmaxs, boxmins, boxsize);
      if (boxsize[0] < 3)
            rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
      else if (model->brush.ishlbsp)
      {
            // LordHavoc: this has to have a minor tolerance (the .1) because of
            // minor float precision errors from the box being transformed around
            if (boxsize[0] < 32.1)
            {
                  if (boxsize[2] < 54) // pick the nearest of 36 or 72
                        rhc.hull = &model->brushq1.hulls[3]; // 32x32x36
                  else
                        rhc.hull = &model->brushq1.hulls[1]; // 32x32x72
            }
            else
                  rhc.hull = &model->brushq1.hulls[2]; // 64x64x64
      }
      else
      {
            // LordHavoc: this has to have a minor tolerance (the .1) because of
            // minor float precision errors from the box being transformed around
            if (boxsize[0] < 32.1)
                  rhc.hull = &model->brushq1.hulls[1]; // 32x32x56
            else
                  rhc.hull = &model->brushq1.hulls[2]; // 64x64x88
      }
      VectorMAMAM(1, start, 1, boxmins, -1, rhc.hull->clip_mins, rhc.start);
      VectorMAMAM(1, end, 1, boxmins, -1, rhc.hull->clip_mins, rhc.end);
      VectorSubtract(rhc.end, rhc.start, rhc.dist);
#if COLLISIONPARANOID >= 2
      Con_Printf("t(%f %f %f,%f %f %f,%i %f %f %f)", rhc.start[0], rhc.start[1], rhc.start[2], rhc.end[0], rhc.end[1], rhc.end[2], rhc.hull - model->brushq1.hulls, rhc.hull->clip_mins[0], rhc.hull->clip_mins[1], rhc.hull->clip_mins[2]);
      Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
      {

            double test[3];
            trace_t testtrace;
            VectorLerp(rhc.start, rhc.trace->fraction, rhc.end, test);
            memset(&testtrace, 0, sizeof(trace_t));
            rhc.trace = &testtrace;
            rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
            rhc.trace->fraction = 1;
            rhc.trace->realfraction = 1;
            rhc.trace->allsolid = true;
            VectorCopy(test, rhc.start);
            VectorCopy(test, rhc.end);
            VectorClear(rhc.dist);
            Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
            //Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, test, test);
            if (!trace->startsolid && testtrace.startsolid)
                  Con_Printf(" - ended in solid!\n");
      }
      Con_Print("\n");
#else
      if (VectorLength2(rhc.dist))
            Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
      else
            Mod_Q1BSP_RecursiveHullCheckPoint(&rhc, rhc.hull->firstclipnode);
#endif
}

static int Mod_Q1BSP_PointSuperContents(struct model_s *model, int frame, const vec3_t point)
{
      int num = model->brushq1.hulls[0].firstclipnode;
      mplane_t *plane;
      mclipnode_t *nodes = model->brushq1.hulls[0].clipnodes;
      mplane_t *planes = model->brushq1.hulls[0].planes;
      while (num >= 0)
      {
            plane = planes + nodes[num].planenum;
            num = nodes[num].children[(plane->type < 3 ? point[plane->type] : DotProduct(plane->normal, point)) < plane->dist];
      }
      return Mod_Q1BSP_SuperContentsFromNativeContents(NULL, num);
}

void Collision_ClipTrace_Box(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, const texture_t *boxtexture)
{
#if 1
      colbrushf_t cbox;
      colplanef_t cbox_planes[6];
      cbox.isaabb = true;
      cbox.hasaabbplanes = true;
      cbox.supercontents = boxsupercontents;
      cbox.numplanes = 6;
      cbox.numpoints = 0;
      cbox.numtriangles = 0;
      cbox.planes = cbox_planes;
      cbox.points = NULL;
      cbox.elements = NULL;
      cbox.markframe = 0;
      cbox.mins[0] = 0;
      cbox.mins[1] = 0;
      cbox.mins[2] = 0;
      cbox.maxs[0] = 0;
      cbox.maxs[1] = 0;
      cbox.maxs[2] = 0;
      cbox_planes[0].normal[0] =  1;cbox_planes[0].normal[1] =  0;cbox_planes[0].normal[2] =  0;cbox_planes[0].dist = cmaxs[0] - mins[0];
      cbox_planes[1].normal[0] = -1;cbox_planes[1].normal[1] =  0;cbox_planes[1].normal[2] =  0;cbox_planes[1].dist = maxs[0] - cmins[0];
      cbox_planes[2].normal[0] =  0;cbox_planes[2].normal[1] =  1;cbox_planes[2].normal[2] =  0;cbox_planes[2].dist = cmaxs[1] - mins[1];
      cbox_planes[3].normal[0] =  0;cbox_planes[3].normal[1] = -1;cbox_planes[3].normal[2] =  0;cbox_planes[3].dist = maxs[1] - cmins[1];
      cbox_planes[4].normal[0] =  0;cbox_planes[4].normal[1] =  0;cbox_planes[4].normal[2] =  1;cbox_planes[4].dist = cmaxs[2] - mins[2];
      cbox_planes[5].normal[0] =  0;cbox_planes[5].normal[1] =  0;cbox_planes[5].normal[2] = -1;cbox_planes[5].dist = maxs[2] - cmins[2];
      cbox_planes[0].q3surfaceflags = boxq3surfaceflags;cbox_planes[0].texture = boxtexture;
      cbox_planes[1].q3surfaceflags = boxq3surfaceflags;cbox_planes[1].texture = boxtexture;
      cbox_planes[2].q3surfaceflags = boxq3surfaceflags;cbox_planes[2].texture = boxtexture;
      cbox_planes[3].q3surfaceflags = boxq3surfaceflags;cbox_planes[3].texture = boxtexture;
      cbox_planes[4].q3surfaceflags = boxq3surfaceflags;cbox_planes[4].texture = boxtexture;
      cbox_planes[5].q3surfaceflags = boxq3surfaceflags;cbox_planes[5].texture = boxtexture;
      memset(trace, 0, sizeof(trace_t));
      trace->hitsupercontentsmask = hitsupercontentsmask;
      trace->fraction = 1;
      trace->realfraction = 1;
      Collision_TraceLineBrushFloat(trace, start, end, &cbox, &cbox);
#else
      RecursiveHullCheckTraceInfo_t rhc;
      static hull_t box_hull;
      static mclipnode_t box_clipnodes[6];
      static mplane_t box_planes[6];
      // fill in a default trace
      memset(&rhc, 0, sizeof(rhc));
      memset(trace, 0, sizeof(trace_t));
      //To keep everything totally uniform, bounding boxes are turned into small
      //BSP trees instead of being compared directly.
      // create a temp hull from bounding box sizes
      box_planes[0].dist = cmaxs[0] - mins[0];
      box_planes[1].dist = cmins[0] - maxs[0];
      box_planes[2].dist = cmaxs[1] - mins[1];
      box_planes[3].dist = cmins[1] - maxs[1];
      box_planes[4].dist = cmaxs[2] - mins[2];
      box_planes[5].dist = cmins[2] - maxs[2];
#if COLLISIONPARANOID >= 3
      Con_Printf("box_planes %f:%f %f:%f %f:%f\ncbox %f %f %f:%f %f %f\nbox %f %f %f:%f %f %f\n", box_planes[0].dist, box_planes[1].dist, box_planes[2].dist, box_planes[3].dist, box_planes[4].dist, box_planes[5].dist, cmins[0], cmins[1], cmins[2], cmaxs[0], cmaxs[1], cmaxs[2], mins[0], mins[1], mins[2], maxs[0], maxs[1], maxs[2]);
#endif

      if (box_hull.clipnodes == NULL)
      {
            int i, side;

            //Set up the planes and clipnodes so that the six floats of a bounding box
            //can just be stored out and get a proper hull_t structure.

            box_hull.clipnodes = box_clipnodes;
            box_hull.planes = box_planes;
            box_hull.firstclipnode = 0;
            box_hull.lastclipnode = 5;

            for (i = 0;i < 6;i++)
            {
                  box_clipnodes[i].planenum = i;

                  side = i&1;

                  box_clipnodes[i].children[side] = CONTENTS_EMPTY;
                  if (i != 5)
                        box_clipnodes[i].children[side^1] = i + 1;
                  else
                        box_clipnodes[i].children[side^1] = CONTENTS_SOLID;

                  box_planes[i].type = i>>1;
                  box_planes[i].normal[i>>1] = 1;
            }
      }

      // trace a line through the generated clipping hull
      //rhc.boxsupercontents = boxsupercontents;
      rhc.hull = &box_hull;
      rhc.trace = trace;
      rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
      rhc.trace->fraction = 1;
      rhc.trace->realfraction = 1;
      rhc.trace->allsolid = true;
      VectorCopy(start, rhc.start);
      VectorCopy(end, rhc.end);
      VectorSubtract(rhc.end, rhc.start, rhc.dist);
      Mod_Q1BSP_RecursiveHullCheck(&rhc, rhc.hull->firstclipnode, 0, 1, rhc.start, rhc.end);
      //VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos);
      if (rhc.trace->startsupercontents)
            rhc.trace->startsupercontents = boxsupercontents;
#endif
}

void Collision_ClipTrace_Point(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, int hitsupercontentsmask, int boxsupercontents, int boxq3surfaceflags, const texture_t *boxtexture)
{
      memset(trace, 0, sizeof(trace_t));
      trace->fraction = 1;
      trace->realfraction = 1;
      if (BoxesOverlap(start, start, cmins, cmaxs))
      {
            trace->startsupercontents |= boxsupercontents;
            if (hitsupercontentsmask & boxsupercontents)
            {
                  trace->startsolid = true;
                  trace->allsolid = true;
            }
      }
}

static qboolean Mod_Q1BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end)
{
      trace_t trace;
      Mod_Q1BSP_TraceLine(model, NULL, NULL, &trace, start, end, SUPERCONTENTS_VISBLOCKERMASK);
      return trace.fraction == 1;
}

static int Mod_Q1BSP_LightPoint_RecursiveBSPNode(dp_model_t *model, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal, const mnode_t *node, float x, float y, float startz, float endz)
{
      int side;
      float front, back;
      float mid, distz = endz - startz;

loc0:
      if (!node->plane)
            return false;           // didn't hit anything

      switch (node->plane->type)
      {
      case PLANE_X:
            node = node->children[x < node->plane->dist];
            goto loc0;
      case PLANE_Y:
            node = node->children[y < node->plane->dist];
            goto loc0;
      case PLANE_Z:
            side = startz < node->plane->dist;
            if ((endz < node->plane->dist) == side)
            {
                  node = node->children[side];
                  goto loc0;
            }
            // found an intersection
            mid = node->plane->dist;
            break;
      default:
            back = front = x * node->plane->normal[0] + y * node->plane->normal[1];
            front += startz * node->plane->normal[2];
            back += endz * node->plane->normal[2];
            side = front < node->plane->dist;
            if ((back < node->plane->dist) == side)
            {
                  node = node->children[side];
                  goto loc0;
            }
            // found an intersection
            mid = startz + distz * (front - node->plane->dist) / (front - back);
            break;
      }

      // go down front side
      if (node->children[side]->plane && Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, node->children[side], x, y, startz, mid))
            return true;      // hit something
      else
      {
            // check for impact on this node
            if (node->numsurfaces)
            {
                  int i, dsi, dti, lmwidth, lmheight;
                  float ds, dt;
                  msurface_t *surface;
                  unsigned char *lightmap;
                  int maps, line3, size3;
                  float dsfrac;
                  float dtfrac;
                  float scale, w, w00, w01, w10, w11;

                  surface = model->data_surfaces + node->firstsurface;
                  for (i = 0;i < node->numsurfaces;i++, surface++)
                  {
                        if (!(surface->texture->basematerialflags & MATERIALFLAG_WALL) || !surface->lightmapinfo || !surface->lightmapinfo->samples)
                              continue;   // no lightmaps

                        // location we want to sample in the lightmap
                        ds = ((x * surface->lightmapinfo->texinfo->vecs[0][0] + y * surface->lightmapinfo->texinfo->vecs[0][1] + mid * surface->lightmapinfo->texinfo->vecs[0][2] + surface->lightmapinfo->texinfo->vecs[0][3]) - surface->lightmapinfo->texturemins[0]) * 0.0625f;
                        dt = ((x * surface->lightmapinfo->texinfo->vecs[1][0] + y * surface->lightmapinfo->texinfo->vecs[1][1] + mid * surface->lightmapinfo->texinfo->vecs[1][2] + surface->lightmapinfo->texinfo->vecs[1][3]) - surface->lightmapinfo->texturemins[1]) * 0.0625f;

                        // check the bounds
                        dsi = (int)ds;
                        dti = (int)dt;
                        lmwidth = ((surface->lightmapinfo->extents[0]>>4)+1);
                        lmheight = ((surface->lightmapinfo->extents[1]>>4)+1);

                        // is it in bounds?
                        if (dsi >= 0 && dsi < lmwidth-1 && dti >= 0 && dti < lmheight-1)
                        {
                              // calculate bilinear interpolation factors
                              // and also multiply by fixedpoint conversion factors
                              dsfrac = ds - dsi;
                              dtfrac = dt - dti;
                              w00 = (1 - dsfrac) * (1 - dtfrac) * (1.0f / 32768.0f);
                              w01 = (    dsfrac) * (1 - dtfrac) * (1.0f / 32768.0f);
                              w10 = (1 - dsfrac) * (    dtfrac) * (1.0f / 32768.0f);
                              w11 = (    dsfrac) * (    dtfrac) * (1.0f / 32768.0f);

                              // values for pointer math
                              line3 = lmwidth * 3; // LordHavoc: *3 for colored lighting
                              size3 = lmwidth * lmheight * 3; // LordHavoc: *3 for colored lighting

                              // look up the pixel
                              lightmap = surface->lightmapinfo->samples + dti * line3 + dsi*3; // LordHavoc: *3 for colored lighting

                              // bilinear filter each lightmap style, and sum them
                              for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++)
                              {
                                    scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]];
                                    w = w00 * scale;VectorMA(ambientcolor, w, lightmap            , ambientcolor);
                                    w = w01 * scale;VectorMA(ambientcolor, w, lightmap + 3        , ambientcolor);
                                    w = w10 * scale;VectorMA(ambientcolor, w, lightmap + line3    , ambientcolor);
                                    w = w11 * scale;VectorMA(ambientcolor, w, lightmap + line3 + 3, ambientcolor);
                                    lightmap += size3;
                              }

                              return true; // success
                        }
                  }
            }

            // go down back side
            node = node->children[side ^ 1];
            startz = mid;
            distz = endz - startz;
            goto loc0;
      }
}

void Mod_Q1BSP_LightPoint(dp_model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal)
{
      // pretend lighting is coming down from above (due to lack of a lightgrid to know primary lighting direction)
      VectorSet(diffusenormal, 0, 0, 1);

      if (!model->brushq1.lightdata)
      {
            VectorSet(ambientcolor, 1, 1, 1);
            VectorSet(diffusecolor, 0, 0, 0);
            return;
      }

      Mod_Q1BSP_LightPoint_RecursiveBSPNode(model, ambientcolor, diffusecolor, diffusenormal, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, p[0], p[1], p[2] + 0.125, p[2] - 65536);
}

static const texture_t *Mod_Q1BSP_TraceLineAgainstSurfacesFindTextureOnNode(RecursiveHullCheckTraceInfo_t *t, const dp_model_t *model, const mnode_t *node, double mid[3])
{
      int i;
      int j;
      int k;
      const msurface_t *surface;
      float normal[3];
      float v0[3];
      float v1[3];
      float edgedir[3];
      float edgenormal[3];
      float p[4];
      float midf;
      float t1;
      float t2;
      VectorCopy(mid, p);
      p[3] = 1;
      surface = model->data_surfaces + node->firstsurface;
      for (i = 0;i < node->numsurfaces;i++, surface++)
      {
            // skip surfaces whose bounding box does not include the point
//          if (!BoxesOverlap(mid, mid, surface->mins, surface->maxs))
//                continue;
            // skip faces with contents we don't care about
            if (!(t->trace->hitsupercontentsmask & surface->texture->supercontents))
                  continue;
            // get the surface normal - since it is flat we know any vertex normal will suffice
            VectorCopy(model->surfmesh.data_normal3f + 3 * surface->num_firstvertex, normal);
            // skip backfaces
            if (DotProduct(t->dist, normal) > 0)
                  continue;
            // iterate edges and see if the point is outside one of them
            for (j = 0, k = surface->num_vertices - 1;j < surface->num_vertices;k = j, j++)
            {
                  VectorCopy(model->surfmesh.data_vertex3f + 3 * (surface->num_firstvertex + k), v0);
                  VectorCopy(model->surfmesh.data_vertex3f + 3 * (surface->num_firstvertex + j), v1);
                  VectorSubtract(v0, v1, edgedir);
                  CrossProduct(edgedir, normal, edgenormal);
                  if (DotProduct(edgenormal, p) > DotProduct(edgenormal, v0))
                        break;
            }
            // if the point is outside one of the edges, it is not within the surface
            if (j < surface->num_vertices)
                  continue;

            // we hit a surface, this is the impact point...
            VectorCopy(normal, t->trace->plane.normal);
            t->trace->plane.dist = DotProduct(normal, p);

            // calculate the true fraction
            t1 = DotProduct(t->start, t->trace->plane.normal) - t->trace->plane.dist;
            t2 = DotProduct(t->end, t->trace->plane.normal) - t->trace->plane.dist;
            midf = t1 / (t1 - t2);
            t->trace->realfraction = midf;

            // calculate the return fraction which is nudged off the surface a bit
            midf = (t1 - DIST_EPSILON) / (t1 - t2);
            t->trace->fraction = bound(0, midf, 1);

            if (collision_prefernudgedfraction.integer)
                  t->trace->realfraction = t->trace->fraction;

            t->trace->hittexture = surface->texture->currentframe;
            t->trace->hitq3surfaceflags = t->trace->hittexture->surfaceflags;
            t->trace->hitsupercontents = t->trace->hittexture->supercontents;
            return surface->texture->currentframe;
      }
      return NULL;
}

static int Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(RecursiveHullCheckTraceInfo_t *t, const dp_model_t *model, const mnode_t *node, const double p1[3], const double p2[3])
{
      const mplane_t *plane;
      double t1, t2;
      int side;
      double midf, mid[3];
      const mleaf_t *leaf;

      while (node->plane)
      {
            plane = node->plane;
            if (plane->type < 3)
            {
                  t1 = p1[plane->type] - plane->dist;
                  t2 = p2[plane->type] - plane->dist;
            }
            else
            {
                  t1 = DotProduct (plane->normal, p1) - plane->dist;
                  t2 = DotProduct (plane->normal, p2) - plane->dist;
            }
            if (t1 < 0)
            {
                  if (t2 < 0)
                  {
                        node = node->children[1];
                        continue;
                  }
                  side = 1;
            }
            else
            {
                  if (t2 >= 0)
                  {
                        node = node->children[0];
                        continue;
                  }
                  side = 0;
            }

            // the line intersects, find intersection point
            // LordHavoc: this uses the original trace for maximum accuracy
            if (plane->type < 3)
            {
                  t1 = t->start[plane->type] - plane->dist;
                  t2 = t->end[plane->type] - plane->dist;
            }
            else
            {
                  t1 = DotProduct (plane->normal, t->start) - plane->dist;
                  t2 = DotProduct (plane->normal, t->end) - plane->dist;
            }
      
            midf = t1 / (t1 - t2);
            VectorMA(t->start, midf, t->dist, mid);

            // recurse both sides, front side first, return if we hit a surface
            if (Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(t, model, node->children[side], p1, mid) == HULLCHECKSTATE_DONE)
                  return HULLCHECKSTATE_DONE;

            // test each surface on the node
            Mod_Q1BSP_TraceLineAgainstSurfacesFindTextureOnNode(t, model, node, mid);
            if (t->trace->hittexture)
                  return HULLCHECKSTATE_DONE;

            // recurse back side
            return Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(t, model, node->children[side ^ 1], mid, p2);
      }
      leaf = (const mleaf_t *)node;
      side = Mod_Q1BSP_SuperContentsFromNativeContents(NULL, leaf->contents);
      if (!t->trace->startfound)
      {
            t->trace->startfound = true;
            t->trace->startsupercontents |= side;
      }
      if (side & SUPERCONTENTS_LIQUIDSMASK)
            t->trace->inwater = true;
      if (side == 0)
            t->trace->inopen = true;
      if (side & t->trace->hitsupercontentsmask)
      {
            // if the first leaf is solid, set startsolid
            if (t->trace->allsolid)
                  t->trace->startsolid = true;
            return HULLCHECKSTATE_SOLID;
      }
      else
      {
            t->trace->allsolid = false;
            return HULLCHECKSTATE_EMPTY;
      }
}

static void Mod_Q1BSP_TraceLineAgainstSurfaces(struct model_s *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
      RecursiveHullCheckTraceInfo_t rhc;

      memset(&rhc, 0, sizeof(rhc));
      memset(trace, 0, sizeof(trace_t));
      rhc.trace = trace;
      rhc.trace->hitsupercontentsmask = hitsupercontentsmask;
      rhc.trace->fraction = 1;
      rhc.trace->realfraction = 1;
      rhc.trace->allsolid = true;
      rhc.hull = &model->brushq1.hulls[0]; // 0x0x0
      VectorCopy(start, rhc.start);
      VectorCopy(end, rhc.end);
      VectorSubtract(rhc.end, rhc.start, rhc.dist);
      Mod_Q1BSP_TraceLineAgainstSurfacesRecursiveBSPNode(&rhc, model, model->brush.data_nodes + rhc.hull->firstclipnode, rhc.start, rhc.end);
      VectorMA(rhc.start, rhc.trace->fraction, rhc.dist, rhc.trace->endpos);
}

static void Mod_Q1BSP_DecompressVis(const unsigned char *in, const unsigned char *inend, unsigned char *out, unsigned char *outend)
{
      int c;
      unsigned char *outstart = out;
      while (out < outend)
      {
            if (in == inend)
            {
                  Con_Printf("Mod_Q1BSP_DecompressVis: input underrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
                  return;
            }
            c = *in++;
            if (c)
                  *out++ = c;
            else
            {
                  if (in == inend)
                  {
                        Con_Printf("Mod_Q1BSP_DecompressVis: input underrun (during zero-run) on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
                        return;
                  }
                  for (c = *in++;c > 0;c--)
                  {
                        if (out == outend)
                        {
                              Con_Printf("Mod_Q1BSP_DecompressVis: output overrun on model \"%s\" (decompressed %i of %i output bytes)\n", loadmodel->name, (int)(out - outstart), (int)(outend - outstart));
                              return;
                        }
                        *out++ = 0;
                  }
            }
      }
}

/*
=============
R_Q1BSP_LoadSplitSky

A sky texture is 256*128, with the right side being a masked overlay
==============
*/
void R_Q1BSP_LoadSplitSky (unsigned char *src, int width, int height, int bytesperpixel)
{
      int x, y;
      int w = width/2;
      int h = height;
      unsigned int *solidpixels = (unsigned int *)Mem_Alloc(tempmempool, w*h*sizeof(unsigned char[4]));
      unsigned int *alphapixels = (unsigned int *)Mem_Alloc(tempmempool, w*h*sizeof(unsigned char[4]));

      // allocate a texture pool if we need it
      if (loadmodel->texturepool == NULL && cls.state != ca_dedicated)
            loadmodel->texturepool = R_AllocTexturePool();

      if (bytesperpixel == 4)
      {
            for (y = 0;y < h;y++)
            {
                  for (x = 0;x < w;x++)
                  {
                        solidpixels[y*w+x] = ((unsigned *)src)[y*width+x+w];
                        alphapixels[y*w+x] = ((unsigned *)src)[y*width+x];
                  }
            }
      }
      else
      {
            // make an average value for the back to avoid
            // a fringe on the top level
            int p, r, g, b;
            union
            {
                  unsigned int i;
                  unsigned char b[4];
            }
            bgra;
            r = g = b = 0;
            for (y = 0;y < h;y++)
            {
                  for (x = 0;x < w;x++)
                  {
                        p = src[x*width+y+w];
                        r += palette_rgb[p][0];
                        g += palette_rgb[p][1];
                        b += palette_rgb[p][2];
                  }
            }
            bgra.b[2] = r/(w*h);
            bgra.b[1] = g/(w*h);
            bgra.b[0] = b/(w*h);
            bgra.b[3] = 0;
            for (y = 0;y < h;y++)
            {
                  for (x = 0;x < w;x++)
                  {
                        solidpixels[y*w+x] = palette_bgra_complete[src[y*width+x+w]];
                        p = src[y*width+x];
                        alphapixels[y*w+x] = p ? palette_bgra_complete[p] : bgra.i;
                  }
            }
      }

      loadmodel->brush.solidskyskinframe = R_SkinFrame_LoadInternalBGRA("sky_solidtexture", 0         , (unsigned char *) solidpixels, w, h, vid.sRGB3D);
      loadmodel->brush.alphaskyskinframe = R_SkinFrame_LoadInternalBGRA("sky_alphatexture", TEXF_ALPHA, (unsigned char *) alphapixels, w, h, vid.sRGB3D);
      Mem_Free(solidpixels);
      Mem_Free(alphapixels);
}

static void Mod_Q1BSP_LoadTextures(lump_t *l)
{
      int i, j, k, num, max, altmax, mtwidth, mtheight, *dofs, incomplete;
      skinframe_t *skinframe;
      miptex_t *dmiptex;
      texture_t *tx, *tx2, *anims[10], *altanims[10];
      texture_t backuptex;
      dmiptexlump_t *m;
      unsigned char *data, *mtdata;
      const char *s;
      char mapname[MAX_QPATH], name[MAX_QPATH];
      unsigned char zeroopaque[4], zerotrans[4];
      Vector4Set(zeroopaque, 0, 0, 0, 255);
      Vector4Set(zerotrans, 0, 0, 0, 128);

      loadmodel->data_textures = NULL;

      // add two slots for notexture walls and notexture liquids
      if (l->filelen)
      {
            m = (dmiptexlump_t *)(mod_base + l->fileofs);
            m->nummiptex = LittleLong (m->nummiptex);
            loadmodel->num_textures = m->nummiptex + 2;
            loadmodel->num_texturesperskin = loadmodel->num_textures;
      }
      else
      {
            m = NULL;
            loadmodel->num_textures = 2;
            loadmodel->num_texturesperskin = loadmodel->num_textures;
      }

      loadmodel->data_textures = (texture_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_textures * sizeof(texture_t));

      // fill out all slots with notexture
      if (cls.state != ca_dedicated)
            skinframe = R_SkinFrame_LoadMissing();
      else
            skinframe = NULL;
      for (i = 0, tx = loadmodel->data_textures;i < loadmodel->num_textures;i++, tx++)
      {
            strlcpy(tx->name, "NO TEXTURE FOUND", sizeof(tx->name));
            tx->width = 16;
            tx->height = 16;
            if (cls.state != ca_dedicated)
            {
                  tx->numskinframes = 1;
                  tx->skinframerate = 1;
                  tx->skinframes[0] = skinframe;
                  tx->currentskinframe = tx->skinframes[0];
            }
            tx->basematerialflags = MATERIALFLAG_WALL;
            if (i == loadmodel->num_textures - 1)
            {
                  tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW;
                  tx->supercontents = mod_q1bsp_texture_water.supercontents;
                  tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags;
            }
            else
            {
                  tx->supercontents = mod_q1bsp_texture_solid.supercontents;
                  tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags;
            }
            tx->currentframe = tx;

            // clear water settings
            tx->reflectmin = 0;
            tx->reflectmax = 1;
            tx->refractfactor = 1;
            Vector4Set(tx->refractcolor4f, 1, 1, 1, 1);
            tx->reflectfactor = 1;
            Vector4Set(tx->reflectcolor4f, 1, 1, 1, 1);
            tx->r_water_wateralpha = 1;
            tx->offsetmapping = OFFSETMAPPING_DEFAULT;
            tx->offsetscale = 1;
            tx->specularscalemod = 1;
            tx->specularpowermod = 1;
      }

      if (!m)
      {
            Con_Printf("%s: no miptex lump to load textures from\n", loadmodel->name);
            return;
      }

      s = loadmodel->name;
      if (!strncasecmp(s, "maps/", 5))
            s += 5;
      FS_StripExtension(s, mapname, sizeof(mapname));

      // just to work around bounds checking when debugging with it (array index out of bounds error thing)
      dofs = m->dataofs;
      // LordHavoc: mostly rewritten map texture loader
      for (i = 0;i < m->nummiptex;i++)
      {
            dofs[i] = LittleLong(dofs[i]);
            if (r_nosurftextures.integer)
                  continue;
            if (dofs[i] == -1)
            {
                  Con_DPrintf("%s: miptex #%i missing\n", loadmodel->name, i);
                  continue;
            }
            dmiptex = (miptex_t *)((unsigned char *)m + dofs[i]);

            // copy name, but only up to 16 characters
            // (the output buffer can hold more than this, but the input buffer is
            //  only 16)
            for (j = 0;j < 16 && dmiptex->name[j];j++)
                  name[j] = dmiptex->name[j];
            name[j] = 0;

            if (!name[0])
            {
                  dpsnprintf(name, sizeof(name), "unnamed%i", i);
                  Con_DPrintf("%s: warning: renaming unnamed texture to %s\n", loadmodel->name, name);
            }

            mtwidth = LittleLong(dmiptex->width);
            mtheight = LittleLong(dmiptex->height);
            mtdata = NULL;
            j = LittleLong(dmiptex->offsets[0]);
            if (j)
            {
                  // texture included
                  if (j < 40 || j + mtwidth * mtheight > l->filelen)
                  {
                        Con_Printf("%s: Texture \"%s\" is corrupt or incomplete\n", loadmodel->name, dmiptex->name);
                        continue;
                  }
                  mtdata = (unsigned char *)dmiptex + j;
            }

            if ((mtwidth & 15) || (mtheight & 15))
                  Con_DPrintf("%s: warning: texture \"%s\" is not 16 aligned\n", loadmodel->name, dmiptex->name);

            // LordHavoc: force all names to lowercase
            for (j = 0;name[j];j++)
                  if (name[j] >= 'A' && name[j] <= 'Z')
                        name[j] += 'a' - 'A';

            // LordHavoc: backup the texture_t because q3 shader loading overwrites it
            backuptex = loadmodel->data_textures[i];
            if (dmiptex->name[0] && Mod_LoadTextureFromQ3Shader(loadmodel->data_textures + i, name, false, false, 0))
                  continue;
            loadmodel->data_textures[i] = backuptex;

            tx = loadmodel->data_textures + i;
            strlcpy(tx->name, name, sizeof(tx->name));
            tx->width = mtwidth;
            tx->height = mtheight;

            if (tx->name[0] == '*')
            {
                  if (!strncmp(tx->name, "*lava", 5))
                  {
                        tx->supercontents = mod_q1bsp_texture_lava.supercontents;
                        tx->surfaceflags = mod_q1bsp_texture_lava.surfaceflags;
                  }
                  else if (!strncmp(tx->name, "*slime", 6))
                  {
                        tx->supercontents = mod_q1bsp_texture_slime.supercontents;
                        tx->surfaceflags = mod_q1bsp_texture_slime.surfaceflags;
                  }
                  else
                  {
                        tx->supercontents = mod_q1bsp_texture_water.supercontents;
                        tx->surfaceflags = mod_q1bsp_texture_water.surfaceflags;
                  }
            }
            else if (!strncmp(tx->name, "sky", 3))
            {
                  tx->supercontents = mod_q1bsp_texture_sky.supercontents;
                  tx->surfaceflags = mod_q1bsp_texture_sky.surfaceflags;
            }
            else
            {
                  tx->supercontents = mod_q1bsp_texture_solid.supercontents;
                  tx->surfaceflags = mod_q1bsp_texture_solid.surfaceflags;
            }

            if (cls.state != ca_dedicated)
            {
                  // LordHavoc: HL sky textures are entirely different than quake
                  if (!loadmodel->brush.ishlbsp && !strncmp(tx->name, "sky", 3) && mtwidth == mtheight * 2)
                  {
                        data = loadimagepixelsbgra(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s/%s", mapname, tx->name), false, false, false, NULL);
                        if (!data)
                              data = loadimagepixelsbgra(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s", tx->name), false, false, false, NULL);
                        if (data && image_width == image_height * 2)
                        {
                              R_Q1BSP_LoadSplitSky(data, image_width, image_height, 4);
                              Mem_Free(data);
                        }
                        else if (mtdata != NULL)
                              R_Q1BSP_LoadSplitSky(mtdata, mtwidth, mtheight, 1);
                  }
                  else
                  {
                        skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s/%s", mapname, tx->name), TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS, false);
                        if (!skinframe)
                              skinframe = R_SkinFrame_LoadExternal(gamemode == GAME_TENEBRAE ? tx->name : va("textures/%s", tx->name), TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS, false);
                        if (skinframe)
                              tx->offsetmapping = OFFSETMAPPING_DEFAULT; // allow offsetmapping on external textures without a q3 shader
                        if (!skinframe)
                        {
                              // did not find external texture, load it from the bsp or wad3
                              if (loadmodel->brush.ishlbsp)
                              {
                                    // internal texture overrides wad
                                    unsigned char *pixels, *freepixels;
                                    pixels = freepixels = NULL;
                                    if (mtdata)
                                          pixels = W_ConvertWAD3TextureBGRA(dmiptex);
                                    if (pixels == NULL)
                                          pixels = freepixels = W_GetTextureBGRA(tx->name);
                                    if (pixels != NULL)
                                    {
                                          tx->width = image_width;
                                          tx->height = image_height;
                                          skinframe = R_SkinFrame_LoadInternalBGRA(tx->name, TEXF_ALPHA | TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP, pixels, image_width, image_height, true);
                                    }
                                    if (freepixels)
                                          Mem_Free(freepixels);
                              }
                              else if (mtdata) // texture included
                                    skinframe = R_SkinFrame_LoadInternalQuake(tx->name, TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP, false, r_fullbrights.integer, mtdata, tx->width, tx->height);
                        }
                        // if skinframe is still NULL the "missing" texture will be used
                        if (skinframe)
                              tx->skinframes[0] = skinframe;
                  }
                  // LordHavoc: some Tenebrae textures get replaced by black
                  if (!strncmp(tx->name, "*glassmirror", 12)) // Tenebrae
                        tx->skinframes[0] = R_SkinFrame_LoadInternalBGRA(tx->name, TEXF_MIPMAP | TEXF_ALPHA, zerotrans, 1, 1, false);
                  else if (!strncmp(tx->name, "mirror", 6)) // Tenebrae
                        tx->skinframes[0] = R_SkinFrame_LoadInternalBGRA(tx->name, 0, zeroopaque, 1, 1, false);
            }

            tx->basematerialflags = MATERIALFLAG_WALL;
            if (tx->name[0] == '*')
            {
                  // LordHavoc: some turbulent textures should not be affected by wateralpha
                  if (!strncmp(tx->name, "*glassmirror", 12)) // Tenebrae
                        tx->basematerialflags |= MATERIALFLAG_NOSHADOW | MATERIALFLAG_ADD | MATERIALFLAG_BLENDED | MATERIALFLAG_REFLECTION;
                  else if (!strncmp(tx->name,"*lava",5)
                   || !strncmp(tx->name,"*teleport",9)
                   || !strncmp(tx->name,"*rift",5)) // Scourge of Armagon texture
                        tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW;
                  else
                        tx->basematerialflags |= MATERIALFLAG_WATERSCROLL | MATERIALFLAG_LIGHTBOTHSIDES | MATERIALFLAG_NOSHADOW | MATERIALFLAG_WATERALPHA | MATERIALFLAG_WATERSHADER;
                  if (tx->skinframes[0] && tx->skinframes[0]->hasalpha)
                        tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;
            }
            else if (!strncmp(tx->name, "mirror", 6)) // Tenebrae
            {
                  // replace the texture with black
                  tx->basematerialflags |= MATERIALFLAG_REFLECTION;
            }
            else if (!strncmp(tx->name, "sky", 3))
                  tx->basematerialflags = MATERIALFLAG_SKY | MATERIALFLAG_NOSHADOW;
            else if (!strcmp(tx->name, "caulk"))
                  tx->basematerialflags = MATERIALFLAG_NODRAW | MATERIALFLAG_NOSHADOW;
            else if (tx->skinframes[0] && tx->skinframes[0]->hasalpha)
                  tx->basematerialflags |= MATERIALFLAG_ALPHA | MATERIALFLAG_BLENDED | MATERIALFLAG_NOSHADOW;

            // start out with no animation
            tx->currentframe = tx;
            tx->currentskinframe = tx->skinframes[0];
            tx->currentmaterialflags = tx->basematerialflags;
      }

      // sequence the animations
      for (i = 0;i < m->nummiptex;i++)
      {
            tx = loadmodel->data_textures + i;
            if (!tx || tx->name[0] != '+' || tx->name[1] == 0 || tx->name[2] == 0)
                  continue;
            if (tx->anim_total[0] || tx->anim_total[1])
                  continue;   // already sequenced

            // find the number of frames in the animation
            memset(anims, 0, sizeof(anims));
            memset(altanims, 0, sizeof(altanims));

            for (j = i;j < m->nummiptex;j++)
            {
                  tx2 = loadmodel->data_textures + j;
                  if (!tx2 || tx2->name[0] != '+' || strcmp(tx2->name+2, tx->name+2))
                        continue;

                  num = tx2->name[1];
                  if (num >= '0' && num <= '9')
                        anims[num - '0'] = tx2;
                  else if (num >= 'a' && num <= 'j')
                        altanims[num - 'a'] = tx2;
                  else
                        Con_Printf("Bad animating texture %s\n", tx->name);
            }

            max = altmax = 0;
            for (j = 0;j < 10;j++)
            {
                  if (anims[j])
                        max = j + 1;
                  if (altanims[j])
                        altmax = j + 1;
            }
            //Con_Printf("linking animation %s (%i:%i frames)\n\n", tx->name, max, altmax);

            incomplete = false;
            for (j = 0;j < max;j++)
            {
                  if (!anims[j])
                  {
                        Con_Printf("Missing frame %i of %s\n", j, tx->name);
                        incomplete = true;
                  }
            }
            for (j = 0;j < altmax;j++)
            {
                  if (!altanims[j])
                  {
                        Con_Printf("Missing altframe %i of %s\n", j, tx->name);
                        incomplete = true;
                  }
            }
            if (incomplete)
                  continue;

            if (altmax < 1)
            {
                  // if there is no alternate animation, duplicate the primary
                  // animation into the alternate
                  altmax = max;
                  for (k = 0;k < 10;k++)
                        altanims[k] = anims[k];
            }

            // link together the primary animation
            for (j = 0;j < max;j++)
            {
                  tx2 = anims[j];
                  tx2->animated = true;
                  tx2->anim_total[0] = max;
                  tx2->anim_total[1] = altmax;
                  for (k = 0;k < 10;k++)
                  {
                        tx2->anim_frames[0][k] = anims[k];
                        tx2->anim_frames[1][k] = altanims[k];
                  }
            }

            // if there really is an alternate anim...
            if (anims[0] != altanims[0])
            {
                  // link together the alternate animation
                  for (j = 0;j < altmax;j++)
                  {
                        tx2 = altanims[j];
                        tx2->animated = true;
                        // the primary/alternate are reversed here
                        tx2->anim_total[0] = altmax;
                        tx2->anim_total[1] = max;
                        for (k = 0;k < 10;k++)
                        {
                              tx2->anim_frames[0][k] = altanims[k];
                              tx2->anim_frames[1][k] = anims[k];
                        }
                  }
            }
      }
}

static void Mod_Q1BSP_LoadLighting(lump_t *l)
{
      int i;
      unsigned char *in, *out, *data, d;
      char litfilename[MAX_QPATH];
      char dlitfilename[MAX_QPATH];
      fs_offset_t filesize;
      if (loadmodel->brush.ishlbsp) // LordHavoc: load the colored lighting data straight
      {
            loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen);
            for (i=0; i<l->filelen; i++)
                  loadmodel->brushq1.lightdata[i] = mod_base[l->fileofs+i] >>= 1;
      }
      else // LordHavoc: bsp version 29 (normal white lighting)
      {
            // LordHavoc: hope is not lost yet, check for a .lit file to load
            strlcpy (litfilename, loadmodel->name, sizeof (litfilename));
            FS_StripExtension (litfilename, litfilename, sizeof (litfilename));
            strlcpy (dlitfilename, litfilename, sizeof (dlitfilename));
            strlcat (litfilename, ".lit", sizeof (litfilename));
            strlcat (dlitfilename, ".dlit", sizeof (dlitfilename));
            data = (unsigned char*) FS_LoadFile(litfilename, tempmempool, false, &filesize);
            if (data)
            {
                  if (filesize == (fs_offset_t)(8 + l->filelen * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T')
                  {
                        i = LittleLong(((int *)data)[1]);
                        if (i == 1)
                        {
                              if (developer_loading.integer)
                                    Con_Printf("loaded %s\n", litfilename);
                              loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8);
                              memcpy(loadmodel->brushq1.lightdata, data + 8, filesize - 8);
                              Mem_Free(data);
                              data = (unsigned char*) FS_LoadFile(dlitfilename, tempmempool, false, &filesize);
                              if (data)
                              {
                                    if (filesize == (fs_offset_t)(8 + l->filelen * 3) && data[0] == 'Q' && data[1] == 'L' && data[2] == 'I' && data[3] == 'T')
                                    {
                                          i = LittleLong(((int *)data)[1]);
                                          if (i == 1)
                                          {
                                                if (developer_loading.integer)
                                                      Con_Printf("loaded %s\n", dlitfilename);
                                                loadmodel->brushq1.nmaplightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, filesize - 8);
                                                memcpy(loadmodel->brushq1.nmaplightdata, data + 8, filesize - 8);
                                                loadmodel->brushq3.deluxemapping_modelspace = false;
                                                loadmodel->brushq3.deluxemapping = true;
                                          }
                                    }
                                    Mem_Free(data);
                                    data = NULL;
                              }
                              return;
                        }
                        else
                              Con_Printf("Unknown .lit file version (%d)\n", i);
                  }
                  else if (filesize == 8)
                        Con_Print("Empty .lit file, ignoring\n");
                  else
                        Con_Printf("Corrupt .lit file (file size %i bytes, should be %i bytes), ignoring\n", (int) filesize, (int) (8 + l->filelen * 3));
                  if (data)
                  {
                        Mem_Free(data);
                        data = NULL;
                  }
            }
            // LordHavoc: oh well, expand the white lighting data
            if (!l->filelen)
                  return;
            loadmodel->brushq1.lightdata = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen*3);
            in = mod_base + l->fileofs;
            out = loadmodel->brushq1.lightdata;
            for (i = 0;i < l->filelen;i++)
            {
                  d = *in++;
                  *out++ = d;
                  *out++ = d;
                  *out++ = d;
            }
      }
}

static void Mod_Q1BSP_LoadVisibility(lump_t *l)
{
      loadmodel->brushq1.num_compressedpvs = 0;
      loadmodel->brushq1.data_compressedpvs = NULL;
      if (!l->filelen)
            return;
      loadmodel->brushq1.num_compressedpvs = l->filelen;
      loadmodel->brushq1.data_compressedpvs = (unsigned char *)Mem_Alloc(loadmodel->mempool, l->filelen);
      memcpy(loadmodel->brushq1.data_compressedpvs, mod_base + l->fileofs, l->filelen);
}

// used only for HalfLife maps
static void Mod_Q1BSP_ParseWadsFromEntityLump(const char *data)
{
      char key[128], value[4096];
      int i, j, k;
      if (!data)
            return;
      if (!COM_ParseToken_Simple(&data, false, false))
            return; // error
      if (com_token[0] != '{')
            return; // error
      while (1)
      {
            if (!COM_ParseToken_Simple(&data, false, false))
                  return; // error
            if (com_token[0] == '}')
                  break; // end of worldspawn
            if (com_token[0] == '_')
                  strlcpy(key, com_token + 1, sizeof(key));
            else
                  strlcpy(key, com_token, sizeof(key));
            while (key[strlen(key)-1] == ' ') // remove trailing spaces
                  key[strlen(key)-1] = 0;
            if (!COM_ParseToken_Simple(&data, false, false))
                  return; // error
            dpsnprintf(value, sizeof(value), "%s", com_token);
            if (!strcmp("wad", key)) // for HalfLife maps
            {
                  if (loadmodel->brush.ishlbsp)
                  {
                        j = 0;
                        for (i = 0;i < (int)sizeof(value);i++)
                              if (value[i] != ';' && value[i] != '\\' && value[i] != '/' && value[i] != ':')
                                    break;
                        if (value[i])
                        {
                              for (;i < (int)sizeof(value);i++)
                              {
                                    // ignore path - the \\ check is for HalfLife... stupid windoze 'programmers'...
                                    if (value[i] == '\\' || value[i] == '/' || value[i] == ':')
                                          j = i+1;
                                    else if (value[i] == ';' || value[i] == 0)
                                    {
                                          k = value[i];
                                          value[i] = 0;
                                          W_LoadTextureWadFile(&value[j], false);
                                          j = i+1;
                                          if (!k)
                                                break;
                                    }
                              }
                        }
                  }
            }
      }
}

static void Mod_Q1BSP_LoadEntities(lump_t *l)
{
      loadmodel->brush.entities = NULL;
      if (!l->filelen)
            return;
      loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, l->filelen + 1);
      memcpy(loadmodel->brush.entities, mod_base + l->fileofs, l->filelen);
      loadmodel->brush.entities[l->filelen] = 0;
      if (loadmodel->brush.ishlbsp)
            Mod_Q1BSP_ParseWadsFromEntityLump(loadmodel->brush.entities);
}


static void Mod_Q1BSP_LoadVertexes(lump_t *l)
{
      dvertex_t   *in;
      mvertex_t   *out;
      int               i, count;

      in = (dvertex_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadVertexes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (mvertex_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));

      loadmodel->brushq1.vertexes = out;
      loadmodel->brushq1.numvertexes = count;

      for ( i=0 ; i<count ; i++, in++, out++)
      {
            out->position[0] = LittleFloat(in->point[0]);
            out->position[1] = LittleFloat(in->point[1]);
            out->position[2] = LittleFloat(in->point[2]);
      }
}

// The following two functions should be removed and MSG_* or SZ_* function sets adjusted so they
// can be used for this
// REMOVEME
int SB_ReadInt (unsigned char **buffer)
{
      int   i;
      i = ((*buffer)[0]) + 256*((*buffer)[1]) + 65536*((*buffer)[2]) + 16777216*((*buffer)[3]);
      (*buffer) += 4;
      return i;
}

// REMOVEME
float SB_ReadFloat (unsigned char **buffer)
{
      union
      {
            int         i;
            float f;
      } u;

      u.i = SB_ReadInt (buffer);
      return u.f;
}

static void Mod_Q1BSP_LoadSubmodels(lump_t *l, hullinfo_t *hullinfo)
{
      unsigned char           *index;
      dmodel_t    *out;
      int               i, j, count;

      index = (unsigned char *)(mod_base + l->fileofs);
      if (l->filelen % (48+4*hullinfo->filehulls))
            Host_Error ("Mod_Q1BSP_LoadSubmodels: funny lump size in %s", loadmodel->name);

      count = l->filelen / (48+4*hullinfo->filehulls);
      out = (dmodel_t *)Mem_Alloc (loadmodel->mempool, count*sizeof(*out));

      loadmodel->brushq1.submodels = out;
      loadmodel->brush.numsubmodels = count;

      for (i = 0; i < count; i++, out++)
      {
      // spread out the mins / maxs by a pixel
            out->mins[0] = SB_ReadFloat (&index) - 1;
            out->mins[1] = SB_ReadFloat (&index) - 1;
            out->mins[2] = SB_ReadFloat (&index) - 1;
            out->maxs[0] = SB_ReadFloat (&index) + 1;
            out->maxs[1] = SB_ReadFloat (&index) + 1;
            out->maxs[2] = SB_ReadFloat (&index) + 1;
            out->origin[0] = SB_ReadFloat (&index);
            out->origin[1] = SB_ReadFloat (&index);
            out->origin[2] = SB_ReadFloat (&index);
            for (j = 0; j < hullinfo->filehulls; j++)
                  out->headnode[j] = SB_ReadInt (&index);
            out->visleafs = SB_ReadInt (&index);
            out->firstface = SB_ReadInt (&index);
            out->numfaces = SB_ReadInt (&index);
      }
}

static void Mod_Q1BSP_LoadEdges(lump_t *l)
{
      dedge_t *in;
      medge_t *out;
      int   i, count;

      in = (dedge_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadEdges: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (medge_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brushq1.edges = out;
      loadmodel->brushq1.numedges = count;

      for ( i=0 ; i<count ; i++, in++, out++)
      {
            out->v[0] = (unsigned short)LittleShort(in->v[0]);
            out->v[1] = (unsigned short)LittleShort(in->v[1]);
            if (out->v[0] >= loadmodel->brushq1.numvertexes || out->v[1] >= loadmodel->brushq1.numvertexes)
            {
                  Con_Printf("Mod_Q1BSP_LoadEdges: %s has invalid vertex indices in edge %i (vertices %i %i >= numvertices %i)\n", loadmodel->name, i, out->v[0], out->v[1], loadmodel->brushq1.numvertexes);
                  if(!loadmodel->brushq1.numvertexes)
                        Host_Error("Mod_Q1BSP_LoadEdges: %s has edges but no vertexes, cannot fix\n", loadmodel->name);
                        
                  out->v[0] = 0;
                  out->v[1] = 0;
            }
      }
}

static void Mod_Q1BSP_LoadTexinfo(lump_t *l)
{
      texinfo_t *in;
      mtexinfo_t *out;
      int i, j, k, count, miptex;

      in = (texinfo_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadTexinfo: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (mtexinfo_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brushq1.texinfo = out;
      loadmodel->brushq1.numtexinfo = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            for (k = 0;k < 2;k++)
                  for (j = 0;j < 4;j++)
                        out->vecs[k][j] = LittleFloat(in->vecs[k][j]);

            miptex = LittleLong(in->miptex);
            out->flags = LittleLong(in->flags);

            out->texture = NULL;
            if (loadmodel->data_textures)
            {
                  if ((unsigned int) miptex >= (unsigned int) loadmodel->num_textures)
                        Con_Printf("error in model \"%s\": invalid miptex index %i(of %i)\n", loadmodel->name, miptex, loadmodel->num_textures);
                  else
                        out->texture = loadmodel->data_textures + miptex;
            }
            if (out->flags & TEX_SPECIAL)
            {
                  // if texture chosen is NULL or the shader needs a lightmap,
                  // force to notexture water shader
                  if (out->texture == NULL)
                        out->texture = loadmodel->data_textures + (loadmodel->num_textures - 1);
            }
            else
            {
                  // if texture chosen is NULL, force to notexture
                  if (out->texture == NULL)
                        out->texture = loadmodel->data_textures + (loadmodel->num_textures - 2);
            }
      }
}

#if 0
void BoundPoly(int numverts, float *verts, vec3_t mins, vec3_t maxs)
{
      int         i, j;
      float *v;

      mins[0] = mins[1] = mins[2] = 9999;
      maxs[0] = maxs[1] = maxs[2] = -9999;
      v = verts;
      for (i = 0;i < numverts;i++)
      {
            for (j = 0;j < 3;j++, v++)
            {
                  if (*v < mins[j])
                        mins[j] = *v;
                  if (*v > maxs[j])
                        maxs[j] = *v;
            }
      }
}

#define MAX_SUBDIVPOLYTRIANGLES 4096
#define MAX_SUBDIVPOLYVERTS(MAX_SUBDIVPOLYTRIANGLES * 3)

static int subdivpolyverts, subdivpolytriangles;
static int subdivpolyindex[MAX_SUBDIVPOLYTRIANGLES][3];
static float subdivpolyvert[MAX_SUBDIVPOLYVERTS][3];

static int subdivpolylookupvert(vec3_t v)
{
      int i;
      for (i = 0;i < subdivpolyverts;i++)
            if (subdivpolyvert[i][0] == v[0]
             && subdivpolyvert[i][1] == v[1]
             && subdivpolyvert[i][2] == v[2])
                  return i;
      if (subdivpolyverts >= MAX_SUBDIVPOLYVERTS)
            Host_Error("SubDividePolygon: ran out of vertices in buffer, please increase your r_subdivide_size");
      VectorCopy(v, subdivpolyvert[subdivpolyverts]);
      return subdivpolyverts++;
}

static void SubdividePolygon(int numverts, float *verts)
{
      int         i, i1, i2, i3, f, b, c, p;
      vec3_t      mins, maxs, front[256], back[256];
      float m, *pv, *cv, dist[256], frac;

      if (numverts > 250)
            Host_Error("SubdividePolygon: ran out of verts in buffer");

      BoundPoly(numverts, verts, mins, maxs);

      for (i = 0;i < 3;i++)
      {
            m = (mins[i] + maxs[i]) * 0.5;
            m = r_subdivide_size.value * floor(m/r_subdivide_size.value + 0.5);
            if (maxs[i] - m < 8)
                  continue;
            if (m - mins[i] < 8)
                  continue;

            // cut it
            for (cv = verts, c = 0;c < numverts;c++, cv += 3)
                  dist[c] = cv[i] - m;

            f = b = 0;
            for (p = numverts - 1, c = 0, pv = verts + p * 3, cv = verts;c < numverts;p = c, c++, pv = cv, cv += 3)
            {
                  if (dist[p] >= 0)
                  {
                        VectorCopy(pv, front[f]);
                        f++;
                  }
                  if (dist[p] <= 0)
                  {
                        VectorCopy(pv, back[b]);
                        b++;
                  }
                  if (dist[p] == 0 || dist[c] == 0)
                        continue;
                  if ((dist[p] > 0) != (dist[c] > 0) )
                  {
                        // clip point
                        frac = dist[p] / (dist[p] - dist[c]);
                        front[f][0] = back[b][0] = pv[0] + frac * (cv[0] - pv[0]);
                        front[f][1] = back[b][1] = pv[1] + frac * (cv[1] - pv[1]);
                        front[f][2] = back[b][2] = pv[2] + frac * (cv[2] - pv[2]);
                        f++;
                        b++;
                  }
            }

            SubdividePolygon(f, front[0]);
            SubdividePolygon(b, back[0]);
            return;
      }

      i1 = subdivpolylookupvert(verts);
      i2 = subdivpolylookupvert(verts + 3);
      for (i = 2;i < numverts;i++)
      {
            if (subdivpolytriangles >= MAX_SUBDIVPOLYTRIANGLES)
            {
                  Con_Print("SubdividePolygon: ran out of triangles in buffer, please increase your r_subdivide_size\n");
                  return;
            }

            i3 = subdivpolylookupvert(verts + i * 3);
            subdivpolyindex[subdivpolytriangles][0] = i1;
            subdivpolyindex[subdivpolytriangles][1] = i2;
            subdivpolyindex[subdivpolytriangles][2] = i3;
            i2 = i3;
            subdivpolytriangles++;
      }
}

//Breaks a polygon up along axial 64 unit
//boundaries so that turbulent and sky warps
//can be done reasonably.
static void Mod_Q1BSP_GenerateWarpMesh(msurface_t *surface)
{
      int i, j;
      surfvertex_t *v;
      surfmesh_t *mesh;

      subdivpolytriangles = 0;
      subdivpolyverts = 0;
      SubdividePolygon(surface->num_vertices, (surface->mesh->data_vertex3f + 3 * surface->num_firstvertex));
      if (subdivpolytriangles < 1)
            Host_Error("Mod_Q1BSP_GenerateWarpMesh: no triangles?");

      surface->mesh = mesh = Mem_Alloc(loadmodel->mempool, sizeof(surfmesh_t) + subdivpolytriangles * sizeof(int[3]) + subdivpolyverts * sizeof(surfvertex_t));
      mesh->num_vertices = subdivpolyverts;
      mesh->num_triangles = subdivpolytriangles;
      mesh->vertex = (surfvertex_t *)(mesh + 1);
      mesh->index = (int *)(mesh->vertex + mesh->num_vertices);
      memset(mesh->vertex, 0, mesh->num_vertices * sizeof(surfvertex_t));

      for (i = 0;i < mesh->num_triangles;i++)
            for (j = 0;j < 3;j++)
                  mesh->index[i*3+j] = subdivpolyindex[i][j];

      for (i = 0, v = mesh->vertex;i < subdivpolyverts;i++, v++)
      {
            VectorCopy(subdivpolyvert[i], v->v);
            v->st[0] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[0]);
            v->st[1] = DotProduct(v->v, surface->lightmapinfo->texinfo->vecs[1]);
      }
}
#endif

extern cvar_t gl_max_lightmapsize;
static void Mod_Q1BSP_LoadFaces(lump_t *l)
{
      dface_t *in;
      msurface_t *surface;
      int i, j, count, surfacenum, planenum, smax, tmax, ssize, tsize, firstedge, numedges, totalverts, totaltris, lightmapnumber, lightmapsize, totallightmapsamples;
      float texmins[2], texmaxs[2], val;
      rtexture_t *lightmaptexture, *deluxemaptexture;

      in = (dface_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadFaces: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      loadmodel->data_surfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_t));
      loadmodel->data_surfaces_lightmapinfo = (msurface_lightmapinfo_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(msurface_lightmapinfo_t));

      loadmodel->num_surfaces = count;

      loadmodel->brushq1.firstrender = true;
      loadmodel->brushq1.lightmapupdateflags = (unsigned char *)Mem_Alloc(loadmodel->mempool, count*sizeof(unsigned char));

      totalverts = 0;
      totaltris = 0;
      for (surfacenum = 0, in = (dface_t *)(mod_base + l->fileofs);surfacenum < count;surfacenum++, in++)
      {
            numedges = (unsigned short)LittleShort(in->numedges);
            totalverts += numedges;
            totaltris += numedges - 2;
      }

      Mod_AllocSurfMesh(loadmodel->mempool, totalverts, totaltris, true, false, false);

      lightmaptexture = NULL;
      deluxemaptexture = r_texture_blanknormalmap;
      lightmapnumber = 0;
      lightmapsize = bound(256, gl_max_lightmapsize.integer, (int)vid.maxtexturesize_2d);
      totallightmapsamples = 0;

      totalverts = 0;
      totaltris = 0;
      for (surfacenum = 0, in = (dface_t *)(mod_base + l->fileofs), surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, in++, surface++)
      {
            surface->lightmapinfo = loadmodel->data_surfaces_lightmapinfo + surfacenum;

            // FIXME: validate edges, texinfo, etc?
            firstedge = LittleLong(in->firstedge);
            numedges = (unsigned short)LittleShort(in->numedges);
            if ((unsigned int) firstedge > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges || (unsigned int) firstedge + (unsigned int) numedges > (unsigned int) loadmodel->brushq1.numsurfedges)
                  Host_Error("Mod_Q1BSP_LoadFaces: invalid edge range (firstedge %i, numedges %i, model edges %i)", firstedge, numedges, loadmodel->brushq1.numsurfedges);
            i = (unsigned short)LittleShort(in->texinfo);
            if ((unsigned int) i >= (unsigned int) loadmodel->brushq1.numtexinfo)
                  Host_Error("Mod_Q1BSP_LoadFaces: invalid texinfo index %i(model has %i texinfos)", i, loadmodel->brushq1.numtexinfo);
            surface->lightmapinfo->texinfo = loadmodel->brushq1.texinfo + i;
            surface->texture = surface->lightmapinfo->texinfo->texture;

            planenum = (unsigned short)LittleShort(in->planenum);
            if ((unsigned int) planenum >= (unsigned int) loadmodel->brush.num_planes)
                  Host_Error("Mod_Q1BSP_LoadFaces: invalid plane index %i (model has %i planes)", planenum, loadmodel->brush.num_planes);

            //surface->flags = surface->texture->flags;
            //if (LittleShort(in->side))
            //    surface->flags |= SURF_PLANEBACK;
            //surface->plane = loadmodel->brush.data_planes + planenum;

            surface->num_firstvertex = totalverts;
            surface->num_vertices = numedges;
            surface->num_firsttriangle = totaltris;
            surface->num_triangles = numedges - 2;
            totalverts += numedges;
            totaltris += numedges - 2;

            // convert edges back to a normal polygon
            for (i = 0;i < surface->num_vertices;i++)
            {
                  int lindex = loadmodel->brushq1.surfedges[firstedge + i];
                  float s, t;
                  // note: the q1bsp format does not allow a 0 surfedge (it would have no negative counterpart)
                  if (lindex >= 0)
                        VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[lindex].v[0]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3);
                  else
                        VectorCopy(loadmodel->brushq1.vertexes[loadmodel->brushq1.edges[-lindex].v[1]].position, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3);
                  s = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3];
                  t = DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3];
                  (loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 0] = s / surface->texture->width;
                  (loadmodel->surfmesh.data_texcoordtexture2f + 2 * surface->num_firstvertex)[i * 2 + 1] = t / surface->texture->height;
                  (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = 0;
                  (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = 0;
                  (loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = 0;
            }

            for (i = 0;i < surface->num_triangles;i++)
            {
                  (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 0] = 0 + surface->num_firstvertex;
                  (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 1] = i + 1 + surface->num_firstvertex;
                  (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle)[i * 3 + 2] = i + 2 + surface->num_firstvertex;
            }

            // compile additional data about the surface geometry
            Mod_BuildNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_normal3f, r_smoothnormals_areaweighting.integer != 0);
            Mod_BuildTextureVectorsFromNormals(surface->num_firstvertex, surface->num_vertices, surface->num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, (loadmodel->surfmesh.data_element3i + 3 * surface->num_firsttriangle), loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0);
            BoxFromPoints(surface->mins, surface->maxs, surface->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex));

            // generate surface extents information
            texmins[0] = texmaxs[0] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3];
            texmins[1] = texmaxs[1] = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3];
            for (i = 1;i < surface->num_vertices;i++)
            {
                  for (j = 0;j < 2;j++)
                  {
                        val = DotProduct((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3, surface->lightmapinfo->texinfo->vecs[j]) + surface->lightmapinfo->texinfo->vecs[j][3];
                        texmins[j] = min(texmins[j], val);
                        texmaxs[j] = max(texmaxs[j], val);
                  }
            }
            for (i = 0;i < 2;i++)
            {
                  surface->lightmapinfo->texturemins[i] = (int) floor(texmins[i] / 16.0) * 16;
                  surface->lightmapinfo->extents[i] = (int) ceil(texmaxs[i] / 16.0) * 16 - surface->lightmapinfo->texturemins[i];
            }

            smax = surface->lightmapinfo->extents[0] >> 4;
            tmax = surface->lightmapinfo->extents[1] >> 4;
            ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
            tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;

            // lighting info
            for (i = 0;i < MAXLIGHTMAPS;i++)
                  surface->lightmapinfo->styles[i] = in->styles[i];
            surface->lightmaptexture = NULL;
            surface->deluxemaptexture = r_texture_blanknormalmap;
            i = LittleLong(in->lightofs);
            if (i == -1)
            {
                  surface->lightmapinfo->samples = NULL;
#if 1
                  // give non-lightmapped water a 1x white lightmap
                  if (surface->texture->name[0] == '*' && (surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) && ssize <= 256 && tsize <= 256)
                  {
                        surface->lightmapinfo->samples = (unsigned char *)Mem_Alloc(loadmodel->mempool, ssize * tsize * 3);
                        surface->lightmapinfo->styles[0] = 0;
                        memset(surface->lightmapinfo->samples, 128, ssize * tsize * 3);
                  }
#endif
            }
            else if (loadmodel->brush.ishlbsp) // LordHavoc: HalfLife map (bsp version 30)
                  surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + i;
            else // LordHavoc: white lighting (bsp version 29)
            {
                  surface->lightmapinfo->samples = loadmodel->brushq1.lightdata + (i * 3);
                  if (loadmodel->brushq1.nmaplightdata)
                        surface->lightmapinfo->nmapsamples = loadmodel->brushq1.nmaplightdata + (i * 3);
            }

            // check if we should apply a lightmap to this
            if (!(surface->lightmapinfo->texinfo->flags & TEX_SPECIAL) || surface->lightmapinfo->samples)
            {
                  if (ssize > 256 || tsize > 256)
                        Host_Error("Bad surface extents");

                  if (lightmapsize < ssize)
                        lightmapsize = ssize;
                  if (lightmapsize < tsize)
                        lightmapsize = tsize;

                  totallightmapsamples += ssize*tsize;

                  // force lightmap upload on first time seeing the surface
                  //
                  // additionally this is used by the later code to see if a
                  // lightmap is needed on this surface (rather than duplicating the
                  // logic above)
                  loadmodel->brushq1.lightmapupdateflags[surfacenum] = true;
                  loadmodel->lit = true;
            }
      }

      // small maps (such as ammo boxes especially) don't need big lightmap
      // textures, so this code tries to guess a good size based on
      // totallightmapsamples (size of the lightmaps lump basically), as well as
      // trying to max out the size if there is a lot of lightmap data to store
      // additionally, never choose a lightmapsize that is smaller than the
      // largest surface encountered (as it would fail)
      i = lightmapsize;
      for (lightmapsize = 64; (lightmapsize < i) && (lightmapsize < bound(128, gl_max_lightmapsize.integer, (int)vid.maxtexturesize_2d)) && (totallightmapsamples > lightmapsize*lightmapsize); lightmapsize*=2)
            ;

      // now that we've decided the lightmap texture size, we can do the rest
      if (cls.state != ca_dedicated)
      {
            int stainmapsize = 0;
            mod_alloclightmap_state_t allocState;

            Mod_AllocLightmap_Init(&allocState, lightmapsize, lightmapsize);
            for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++)
            {
                  int i, iu, iv, lightmapx = 0, lightmapy = 0;
                  float u, v, ubase, vbase, uscale, vscale;

                  if (!loadmodel->brushq1.lightmapupdateflags[surfacenum])
                        continue;

                  smax = surface->lightmapinfo->extents[0] >> 4;
                  tmax = surface->lightmapinfo->extents[1] >> 4;
                  ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
                  tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
                  stainmapsize += ssize * tsize * 3;

                  if (!lightmaptexture || !Mod_AllocLightmap_Block(&allocState, ssize, tsize, &lightmapx, &lightmapy))
                  {
                        // allocate a texture pool if we need it
                        if (loadmodel->texturepool == NULL)
                              loadmodel->texturepool = R_AllocTexturePool();
                        // could not find room, make a new lightmap
                        loadmodel->brushq3.num_mergedlightmaps = lightmapnumber + 1;
                        loadmodel->brushq3.data_lightmaps = (rtexture_t **)Mem_Realloc(loadmodel->mempool, loadmodel->brushq3.data_lightmaps, loadmodel->brushq3.num_mergedlightmaps * sizeof(loadmodel->brushq3.data_lightmaps[0]));
                        loadmodel->brushq3.data_deluxemaps = (rtexture_t **)Mem_Realloc(loadmodel->mempool, loadmodel->brushq3.data_deluxemaps, loadmodel->brushq3.num_mergedlightmaps * sizeof(loadmodel->brushq3.data_deluxemaps[0]));
                        loadmodel->brushq3.data_lightmaps[lightmapnumber] = lightmaptexture = R_LoadTexture2D(loadmodel->texturepool, va("lightmap%i", lightmapnumber), lightmapsize, lightmapsize, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_ALLOWUPDATES, -1, NULL);
                        if (loadmodel->brushq1.nmaplightdata)
                              loadmodel->brushq3.data_deluxemaps[lightmapnumber] = deluxemaptexture = R_LoadTexture2D(loadmodel->texturepool, va("deluxemap%i", lightmapnumber), lightmapsize, lightmapsize, NULL, TEXTYPE_BGRA, TEXF_FORCELINEAR | TEXF_ALLOWUPDATES, -1, NULL);
                        lightmapnumber++;
                        Mod_AllocLightmap_Reset(&allocState);
                        Mod_AllocLightmap_Block(&allocState, ssize, tsize, &lightmapx, &lightmapy);
                  }
                  surface->lightmaptexture = lightmaptexture;
                  surface->deluxemaptexture = deluxemaptexture;
                  surface->lightmapinfo->lightmaporigin[0] = lightmapx;
                  surface->lightmapinfo->lightmaporigin[1] = lightmapy;

                  uscale = 1.0f / (float)lightmapsize;
                  vscale = 1.0f / (float)lightmapsize;
                  ubase = lightmapx * uscale;
                  vbase = lightmapy * vscale;

                  for (i = 0;i < surface->num_vertices;i++)
                  {
                        u = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3]) + 8 - surface->lightmapinfo->texturemins[0]) * (1.0 / 16.0);
                        v = ((DotProduct(((loadmodel->surfmesh.data_vertex3f + 3 * surface->num_firstvertex) + i * 3), surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3]) + 8 - surface->lightmapinfo->texturemins[1]) * (1.0 / 16.0);
                        (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 0] = u * uscale + ubase;
                        (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * surface->num_firstvertex)[i * 2 + 1] = v * vscale + vbase;
                        // LordHavoc: calc lightmap data offset for vertex lighting to use
                        iu = (int) u;
                        iv = (int) v;
                        (loadmodel->surfmesh.data_lightmapoffsets + surface->num_firstvertex)[i] = (bound(0, iv, tmax) * ssize + bound(0, iu, smax)) * 3;
                  }
            }

            if (cl_stainmaps.integer)
            {
                  // allocate stainmaps for permanent marks on walls and clear white
                  unsigned char *stainsamples = NULL;
                  stainsamples = (unsigned char *)Mem_Alloc(loadmodel->mempool, stainmapsize);
                  memset(stainsamples, 255, stainmapsize);
                  // assign pointers
                  for (surfacenum = 0, surface = loadmodel->data_surfaces;surfacenum < count;surfacenum++, surface++)
                  {
                        if (!loadmodel->brushq1.lightmapupdateflags[surfacenum])
                              continue;
                        ssize = (surface->lightmapinfo->extents[0] >> 4) + 1;
                        tsize = (surface->lightmapinfo->extents[1] >> 4) + 1;
                        surface->lightmapinfo->stainsamples = stainsamples;
                        stainsamples += ssize * tsize * 3;
                  }
            }
      }

      // generate ushort elements array if possible
      if (loadmodel->surfmesh.data_element3s)
            for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
                  loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];
}

static void Mod_Q1BSP_LoadNodes_RecursiveSetParent(mnode_t *node, mnode_t *parent)
{
      //if (node->parent)
      //    Host_Error("Mod_Q1BSP_LoadNodes_RecursiveSetParent: runaway recursion");
      node->parent = parent;
      if (node->plane)
      {
            // this is a node, recurse to children
            Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[0], node);
            Mod_Q1BSP_LoadNodes_RecursiveSetParent(node->children[1], node);
            // combine supercontents of children
            node->combinedsupercontents = node->children[0]->combinedsupercontents | node->children[1]->combinedsupercontents;
      }
      else
      {
            int j;
            mleaf_t *leaf = (mleaf_t *)node;
            // if this is a leaf, calculate supercontents mask from all collidable
            // primitives in the leaf (brushes and collision surfaces)
            // also flag if the leaf contains any collision surfaces
            leaf->combinedsupercontents = 0;
            // combine the supercontents values of all brushes in this leaf
            for (j = 0;j < leaf->numleafbrushes;j++)
                  leaf->combinedsupercontents |= loadmodel->brush.data_brushes[leaf->firstleafbrush[j]].texture->supercontents;
            // check if this leaf contains any collision surfaces (q3 patches)
            for (j = 0;j < leaf->numleafsurfaces;j++)
            {
                  msurface_t *surface = loadmodel->data_surfaces + leaf->firstleafsurface[j];
                  if (surface->num_collisiontriangles)
                  {
                        leaf->containscollisionsurfaces = true;
                        leaf->combinedsupercontents |= surface->texture->supercontents;
                  }
            }
      }
}

static void Mod_Q1BSP_LoadNodes(lump_t *l)
{
      int               i, j, count, p;
      dnode_t           *in;
      mnode_t     *out;

      in = (dnode_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadNodes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      if (count == 0)
            Host_Error("Mod_Q1BSP_LoadNodes: missing BSP tree in %s",loadmodel->name);
      out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));

      loadmodel->brush.data_nodes = out;
      loadmodel->brush.num_nodes = count;

      for ( i=0 ; i<count ; i++, in++, out++)
      {
            for (j=0 ; j<3 ; j++)
            {
                  out->mins[j] = LittleShort(in->mins[j]);
                  out->maxs[j] = LittleShort(in->maxs[j]);
            }

            p = LittleLong(in->planenum);
            out->plane = loadmodel->brush.data_planes + p;

            out->firstsurface = (unsigned short)LittleShort(in->firstface);
            out->numsurfaces = (unsigned short)LittleShort(in->numfaces);

            for (j=0 ; j<2 ; j++)
            {
                  // LordHavoc: this code supports broken bsp files produced by
                  // arguire qbsp which can produce more than 32768 nodes, any value
                  // below count is assumed to be a node number, any other value is
                  // assumed to be a leaf number
                  p = (unsigned short)LittleShort(in->children[j]);
                  if (p < count)
                  {
                        if (p < loadmodel->brush.num_nodes)
                              out->children[j] = loadmodel->brush.data_nodes + p;
                        else
                        {
                              Con_Printf("Mod_Q1BSP_LoadNodes: invalid node index %i (file has only %i nodes)\n", p, loadmodel->brush.num_nodes);
                              // map it to the solid leaf
                              out->children[j] = (mnode_t *)loadmodel->brush.data_leafs;
                        }
                  }
                  else
                  {
                        // note this uses 65535 intentionally, -1 is leaf 0
                        p = 65535 - p;
                        if (p < loadmodel->brush.num_leafs)
                              out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + p);
                        else
                        {
                              Con_Printf("Mod_Q1BSP_LoadNodes: invalid leaf index %i (file has only %i leafs)\n", p, loadmodel->brush.num_leafs);
                              // map it to the solid leaf
                              out->children[j] = (mnode_t *)loadmodel->brush.data_leafs;
                        }
                  }
            }
      }

      Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL);    // sets nodes and leafs
}

static void Mod_Q1BSP_LoadLeafs(lump_t *l)
{
      dleaf_t *in;
      mleaf_t *out;
      int i, j, count, p;

      in = (dleaf_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));

      loadmodel->brush.data_leafs = out;
      loadmodel->brush.num_leafs = count;
      // get visleafs from the submodel data
      loadmodel->brush.num_pvsclusters = loadmodel->brushq1.submodels[0].visleafs;
      loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters+7)>>3;
      loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes);
      memset(loadmodel->brush.data_pvsclusters, 0xFF, loadmodel->brush.num_pvsclusters * loadmodel->brush.num_pvsclusterbytes);

      for ( i=0 ; i<count ; i++, in++, out++)
      {
            for (j=0 ; j<3 ; j++)
            {
                  out->mins[j] = LittleShort(in->mins[j]);
                  out->maxs[j] = LittleShort(in->maxs[j]);
            }

            // FIXME: this function could really benefit from some error checking

            out->contents = LittleLong(in->contents);

            out->firstleafsurface = loadmodel->brush.data_leafsurfaces + (unsigned short)LittleShort(in->firstmarksurface);
            out->numleafsurfaces = (unsigned short)LittleShort(in->nummarksurfaces);
            if ((unsigned short)LittleShort(in->firstmarksurface) + out->numleafsurfaces > loadmodel->brush.num_leafsurfaces)
            {
                  Con_Printf("Mod_Q1BSP_LoadLeafs: invalid leafsurface range %i:%i outside range %i:%i\n", (int)(out->firstleafsurface - loadmodel->brush.data_leafsurfaces), (int)(out->firstleafsurface + out->numleafsurfaces - loadmodel->brush.data_leafsurfaces), 0, loadmodel->brush.num_leafsurfaces);
                  out->firstleafsurface = NULL;
                  out->numleafsurfaces = 0;
            }

            out->clusterindex = i - 1;
            if (out->clusterindex >= loadmodel->brush.num_pvsclusters)
                  out->clusterindex = -1;

            p = LittleLong(in->visofs);
            // ignore visofs errors on leaf 0 (solid)
            if (p >= 0 && out->clusterindex >= 0)
            {
                  if (p >= loadmodel->brushq1.num_compressedpvs)
                        Con_Print("Mod_Q1BSP_LoadLeafs: invalid visofs\n");
                  else
                        Mod_Q1BSP_DecompressVis(loadmodel->brushq1.data_compressedpvs + p, loadmodel->brushq1.data_compressedpvs + loadmodel->brushq1.num_compressedpvs, loadmodel->brush.data_pvsclusters + out->clusterindex * loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.data_pvsclusters + (out->clusterindex + 1) * loadmodel->brush.num_pvsclusterbytes);
            }

            for (j = 0;j < 4;j++)
                  out->ambient_sound_level[j] = in->ambient_level[j];

            // FIXME: Insert caustics here
      }
}

qboolean Mod_Q1BSP_CheckWaterAlphaSupport(void)
{
      int i, j;
      mleaf_t *leaf;
      const unsigned char *pvs;
      // if there's no vis data, assume supported (because everything is visible all the time)
      if (!loadmodel->brush.data_pvsclusters)
            return true;
      // check all liquid leafs to see if they can see into empty leafs, if any
      // can we can assume this map supports r_wateralpha
      for (i = 0, leaf = loadmodel->brush.data_leafs;i < loadmodel->brush.num_leafs;i++, leaf++)
      {
            if ((leaf->contents == CONTENTS_WATER || leaf->contents == CONTENTS_SLIME) && leaf->clusterindex >= 0)
            {
                  pvs = loadmodel->brush.data_pvsclusters + leaf->clusterindex * loadmodel->brush.num_pvsclusterbytes;
                  for (j = 0;j < loadmodel->brush.num_leafs;j++)
                        if (CHECKPVSBIT(pvs, loadmodel->brush.data_leafs[j].clusterindex) && loadmodel->brush.data_leafs[j].contents == CONTENTS_EMPTY)
                              return true;
            }
      }
      return false;
}

static void Mod_Q1BSP_LoadClipnodes(lump_t *l, hullinfo_t *hullinfo)
{
      dclipnode_t *in;
      mclipnode_t *out;
      int               i, count;
      hull_t            *hull;

      in = (dclipnode_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadClipnodes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (mclipnode_t *)Mem_Alloc(loadmodel->mempool, count*sizeof(*out));

      loadmodel->brushq1.clipnodes = out;
      loadmodel->brushq1.numclipnodes = count;

      for (i = 1; i < MAX_MAP_HULLS; i++)
      {
            hull = &loadmodel->brushq1.hulls[i];
            hull->clipnodes = out;
            hull->firstclipnode = 0;
            hull->lastclipnode = count-1;
            hull->planes = loadmodel->brush.data_planes;
            hull->clip_mins[0] = hullinfo->hullsizes[i][0][0];
            hull->clip_mins[1] = hullinfo->hullsizes[i][0][1];
            hull->clip_mins[2] = hullinfo->hullsizes[i][0][2];
            hull->clip_maxs[0] = hullinfo->hullsizes[i][1][0];
            hull->clip_maxs[1] = hullinfo->hullsizes[i][1][1];
            hull->clip_maxs[2] = hullinfo->hullsizes[i][1][2];
            VectorSubtract(hull->clip_maxs, hull->clip_mins, hull->clip_size);
      }

      for (i=0 ; i<count ; i++, out++, in++)
      {
            out->planenum = LittleLong(in->planenum);
            // LordHavoc: this code supports arguire qbsp's broken clipnodes indices (more than 32768 clipnodes), values above count are assumed to be contents values
            out->children[0] = (unsigned short)LittleShort(in->children[0]);
            out->children[1] = (unsigned short)LittleShort(in->children[1]);
            if (out->children[0] >= count)
                  out->children[0] -= 65536;
            if (out->children[1] >= count)
                  out->children[1] -= 65536;
            if (out->planenum < 0 || out->planenum >= loadmodel->brush.num_planes)
                  Host_Error("Corrupt clipping hull(out of range planenum)");
      }
}

//Duplicate the drawing hull structure as a clipping hull
static void Mod_Q1BSP_MakeHull0(void)
{
      mnode_t           *in;
      mclipnode_t *out;
      int               i;
      hull_t            *hull;

      hull = &loadmodel->brushq1.hulls[0];

      in = loadmodel->brush.data_nodes;
      out = (mclipnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_nodes * sizeof(*out));

      hull->clipnodes = out;
      hull->firstclipnode = 0;
      hull->lastclipnode = loadmodel->brush.num_nodes - 1;
      hull->planes = loadmodel->brush.data_planes;

      for (i = 0;i < loadmodel->brush.num_nodes;i++, out++, in++)
      {
            out->planenum = in->plane - loadmodel->brush.data_planes;
            out->children[0] = in->children[0]->plane ? in->children[0] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[0])->contents;
            out->children[1] = in->children[1]->plane ? in->children[1] - loadmodel->brush.data_nodes : ((mleaf_t *)in->children[1])->contents;
      }
}

static void Mod_Q1BSP_LoadLeaffaces(lump_t *l)
{
      int i, j;
      short *in;

      in = (short *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadLeaffaces: funny lump size in %s",loadmodel->name);
      loadmodel->brush.num_leafsurfaces = l->filelen / sizeof(*in);
      loadmodel->brush.data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafsurfaces * sizeof(int));

      for (i = 0;i < loadmodel->brush.num_leafsurfaces;i++)
      {
            j = (unsigned short) LittleShort(in[i]);
            if (j >= loadmodel->num_surfaces)
                  Host_Error("Mod_Q1BSP_LoadLeaffaces: bad surface number");
            loadmodel->brush.data_leafsurfaces[i] = j;
      }
}

static void Mod_Q1BSP_LoadSurfedges(lump_t *l)
{
      int         i;
      int         *in;

      in = (int *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadSurfedges: funny lump size in %s",loadmodel->name);
      loadmodel->brushq1.numsurfedges = l->filelen / sizeof(*in);
      loadmodel->brushq1.surfedges = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->brushq1.numsurfedges * sizeof(int));

      for (i = 0;i < loadmodel->brushq1.numsurfedges;i++)
            loadmodel->brushq1.surfedges[i] = LittleLong(in[i]);
}


static void Mod_Q1BSP_LoadPlanes(lump_t *l)
{
      int               i;
      mplane_t    *out;
      dplane_t    *in;

      in = (dplane_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q1BSP_LoadPlanes: funny lump size in %s", loadmodel->name);

      loadmodel->brush.num_planes = l->filelen / sizeof(*in);
      loadmodel->brush.data_planes = out = (mplane_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_planes * sizeof(*out));

      for (i = 0;i < loadmodel->brush.num_planes;i++, in++, out++)
      {
            out->normal[0] = LittleFloat(in->normal[0]);
            out->normal[1] = LittleFloat(in->normal[1]);
            out->normal[2] = LittleFloat(in->normal[2]);
            out->dist = LittleFloat(in->dist);

            PlaneClassify(out);
      }
}

static void Mod_Q1BSP_LoadMapBrushes(void)
{
#if 0
// unfinished
      int submodel, numbrushes;
      qboolean firstbrush;
      char *text, *maptext;
      char mapfilename[MAX_QPATH];
      FS_StripExtension (loadmodel->name, mapfilename, sizeof (mapfilename));
      strlcat (mapfilename, ".map", sizeof (mapfilename));
      maptext = (unsigned char*) FS_LoadFile(mapfilename, tempmempool, false, NULL);
      if (!maptext)
            return;
      text = maptext;
      if (!COM_ParseToken_Simple(&data, false, false))
            return; // error
      submodel = 0;
      for (;;)
      {
            if (!COM_ParseToken_Simple(&data, false, false))
                  break;
            if (com_token[0] != '{')
                  return; // error
            // entity
            firstbrush = true;
            numbrushes = 0;
            maxbrushes = 256;
            brushes = Mem_Alloc(loadmodel->mempool, maxbrushes * sizeof(mbrush_t));
            for (;;)
            {
                  if (!COM_ParseToken_Simple(&data, false, false))
                        return; // error
                  if (com_token[0] == '}')
                        break; // end of entity
                  if (com_token[0] == '{')
                  {
                        // brush
                        if (firstbrush)
                        {
                              if (submodel)
                              {
                                    if (submodel > loadmodel->brush.numsubmodels)
                                    {
                                          Con_Printf("Mod_Q1BSP_LoadMapBrushes: .map has more submodels than .bsp!\n");
                                          model = NULL;
                                    }
                                    else
                                          model = loadmodel->brush.submodels[submodel];
                              }
                              else
                                    model = loadmodel;
                        }
                        for (;;)
                        {
                              if (!COM_ParseToken_Simple(&data, false, false))
                                    return; // error
                              if (com_token[0] == '}')
                                    break; // end of brush
                              // each brush face should be this format:
                              // ( x y z ) ( x y z ) ( x y z ) texture scroll_s scroll_t rotateangle scale_s scale_t
                              // FIXME: support hl .map format
                              for (pointnum = 0;pointnum < 3;pointnum++)
                              {
                                    COM_ParseToken_Simple(&data, false, false);
                                    for (componentnum = 0;componentnum < 3;componentnum++)
                                    {
                                          COM_ParseToken_Simple(&data, false, false);
                                          point[pointnum][componentnum] = atof(com_token);
                                    }
                                    COM_ParseToken_Simple(&data, false, false);
                              }
                              COM_ParseToken_Simple(&data, false, false);
                              strlcpy(facetexture, com_token, sizeof(facetexture));
                              COM_ParseToken_Simple(&data, false, false);
                              //scroll_s = atof(com_token);
                              COM_ParseToken_Simple(&data, false, false);
                              //scroll_t = atof(com_token);
                              COM_ParseToken_Simple(&data, false, false);
                              //rotate = atof(com_token);
                              COM_ParseToken_Simple(&data, false, false);
                              //scale_s = atof(com_token);
                              COM_ParseToken_Simple(&data, false, false);
                              //scale_t = atof(com_token);
                              TriangleNormal(point[0], point[1], point[2], planenormal);
                              VectorNormalizeDouble(planenormal);
                              planedist = DotProduct(point[0], planenormal);
                              //ChooseTexturePlane(planenormal, texturevector[0], texturevector[1]);
                        }
                        continue;
                  }
            }
      }
#endif
}


#define MAX_PORTALPOINTS 64

03134 typedef struct portal_s
{
      mplane_t plane;
      mnode_t *nodes[2];            // [0] = front side of plane
      struct portal_s *next[2];
      int numpoints;
      double points[3*MAX_PORTALPOINTS];
      struct portal_s *chain; // all portals are linked into a list
}
portal_t;

static memexpandablearray_t portalarray;

static void Mod_Q1BSP_RecursiveRecalcNodeBBox(mnode_t *node)
{
      // process only nodes (leafs already had their box calculated)
      if (!node->plane)
            return;

      // calculate children first
      Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[0]);
      Mod_Q1BSP_RecursiveRecalcNodeBBox(node->children[1]);

      // make combined bounding box from children
      node->mins[0] = min(node->children[0]->mins[0], node->children[1]->mins[0]);
      node->mins[1] = min(node->children[0]->mins[1], node->children[1]->mins[1]);
      node->mins[2] = min(node->children[0]->mins[2], node->children[1]->mins[2]);
      node->maxs[0] = max(node->children[0]->maxs[0], node->children[1]->maxs[0]);
      node->maxs[1] = max(node->children[0]->maxs[1], node->children[1]->maxs[1]);
      node->maxs[2] = max(node->children[0]->maxs[2], node->children[1]->maxs[2]);
}

static void Mod_Q1BSP_FinalizePortals(void)
{
      int i, j, numportals, numpoints, portalindex, portalrange = Mem_ExpandableArray_IndexRange(&portalarray);
      portal_t *p;
      mportal_t *portal;
      mvertex_t *point;
      mleaf_t *leaf, *endleaf;

      // tally up portal and point counts and recalculate bounding boxes for all
      // leafs (because qbsp is very sloppy)
      leaf = loadmodel->brush.data_leafs;
      endleaf = leaf + loadmodel->brush.num_leafs;
      if (mod_recalculatenodeboxes.integer)
      {
            for (;leaf < endleaf;leaf++)
            {
                  VectorSet(leaf->mins,  2000000000,  2000000000,  2000000000);
                  VectorSet(leaf->maxs, -2000000000, -2000000000, -2000000000);
            }
      }
      numportals = 0;
      numpoints = 0;
      for (portalindex = 0;portalindex < portalrange;portalindex++)
      {
            p = (portal_t*)Mem_ExpandableArray_RecordAtIndex(&portalarray, portalindex);
            if (!p)
                  continue;
            // note: this check must match the one below or it will usually corrupt memory
            // the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides
            if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1] && ((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0)
            {
                  numportals += 2;
                  numpoints += p->numpoints * 2;
            }
      }
      loadmodel->brush.data_portals = (mportal_t *)Mem_Alloc(loadmodel->mempool, numportals * sizeof(mportal_t) + numpoints * sizeof(mvertex_t));
      loadmodel->brush.num_portals = numportals;
      loadmodel->brush.data_portalpoints = (mvertex_t *)((unsigned char *) loadmodel->brush.data_portals + numportals * sizeof(mportal_t));
      loadmodel->brush.num_portalpoints = numpoints;
      // clear all leaf portal chains
      for (i = 0;i < loadmodel->brush.num_leafs;i++)
            loadmodel->brush.data_leafs[i].portals = NULL;
      // process all portals in the global portal chain, while freeing them
      portal = loadmodel->brush.data_portals;
      point = loadmodel->brush.data_portalpoints;
      for (portalindex = 0;portalindex < portalrange;portalindex++)
      {
            p = (portal_t*)Mem_ExpandableArray_RecordAtIndex(&portalarray, portalindex);
            if (!p)
                  continue;
            if (p->numpoints >= 3 && p->nodes[0] != p->nodes[1])
            {
                  // note: this check must match the one above or it will usually corrupt memory
                  // the nodes[0] != nodes[1] check is because leaf 0 is the shared solid leaf, it can have many portals inside with leaf 0 on both sides
                  if (((mleaf_t *)p->nodes[0])->clusterindex >= 0 && ((mleaf_t *)p->nodes[1])->clusterindex >= 0)
                  {
                        // first make the back to front portal(forward portal)
                        portal->points = point;
                        portal->numpoints = p->numpoints;
                        portal->plane.dist = p->plane.dist;
                        VectorCopy(p->plane.normal, portal->plane.normal);
                        portal->here = (mleaf_t *)p->nodes[1];
                        portal->past = (mleaf_t *)p->nodes[0];
                        // copy points
                        for (j = 0;j < portal->numpoints;j++)
                        {
                              VectorCopy(p->points + j*3, point->position);
                              point++;
                        }
                        BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position);
                        PlaneClassify(&portal->plane);

                        // link into leaf's portal chain
                        portal->next = portal->here->portals;
                        portal->here->portals = portal;

                        // advance to next portal
                        portal++;

                        // then make the front to back portal(backward portal)
                        portal->points = point;
                        portal->numpoints = p->numpoints;
                        portal->plane.dist = -p->plane.dist;
                        VectorNegate(p->plane.normal, portal->plane.normal);
                        portal->here = (mleaf_t *)p->nodes[0];
                        portal->past = (mleaf_t *)p->nodes[1];
                        // copy points
                        for (j = portal->numpoints - 1;j >= 0;j--)
                        {
                              VectorCopy(p->points + j*3, point->position);
                              point++;
                        }
                        BoxFromPoints(portal->mins, portal->maxs, portal->numpoints, portal->points->position);
                        PlaneClassify(&portal->plane);

                        // link into leaf's portal chain
                        portal->next = portal->here->portals;
                        portal->here->portals = portal;

                        // advance to next portal
                        portal++;
                  }
                  // add the portal's polygon points to the leaf bounding boxes
                  if (mod_recalculatenodeboxes.integer)
                  {
                        for (i = 0;i < 2;i++)
                        {
                              leaf = (mleaf_t *)p->nodes[i];
                              for (j = 0;j < p->numpoints;j++)
                              {
                                    if (leaf->mins[0] > p->points[j*3+0]) leaf->mins[0] = p->points[j*3+0];
                                    if (leaf->mins[1] > p->points[j*3+1]) leaf->mins[1] = p->points[j*3+1];
                                    if (leaf->mins[2] > p->points[j*3+2]) leaf->mins[2] = p->points[j*3+2];
                                    if (leaf->maxs[0] < p->points[j*3+0]) leaf->maxs[0] = p->points[j*3+0];
                                    if (leaf->maxs[1] < p->points[j*3+1]) leaf->maxs[1] = p->points[j*3+1];
                                    if (leaf->maxs[2] < p->points[j*3+2]) leaf->maxs[2] = p->points[j*3+2];
                              }
                        }
                  }
            }
      }
      // now recalculate the node bounding boxes from the leafs
      if (mod_recalculatenodeboxes.integer)
            Mod_Q1BSP_RecursiveRecalcNodeBBox(loadmodel->brush.data_nodes + loadmodel->brushq1.hulls[0].firstclipnode);
}

/*
=============
AddPortalToNodes
=============
*/
static void AddPortalToNodes(portal_t *p, mnode_t *front, mnode_t *back)
{
      if (!front)
            Host_Error("AddPortalToNodes: NULL front node");
      if (!back)
            Host_Error("AddPortalToNodes: NULL back node");
      if (p->nodes[0] || p->nodes[1])
            Host_Error("AddPortalToNodes: already included");
      // note: front == back is handled gracefully, because leaf 0 is the shared solid leaf, it can often have portals with the same leaf on both sides

      p->nodes[0] = front;
      p->next[0] = (portal_t *)front->portals;
      front->portals = (mportal_t *)p;

      p->nodes[1] = back;
      p->next[1] = (portal_t *)back->portals;
      back->portals = (mportal_t *)p;
}

/*
=============
RemovePortalFromNode
=============
*/
static void RemovePortalFromNodes(portal_t *portal)
{
      int i;
      mnode_t *node;
      void **portalpointer;
      portal_t *t;
      for (i = 0;i < 2;i++)
      {
            node = portal->nodes[i];

            portalpointer = (void **) &node->portals;
            while (1)
            {
                  t = (portal_t *)*portalpointer;
                  if (!t)
                        Host_Error("RemovePortalFromNodes: portal not in leaf");

                  if (t == portal)
                  {
                        if (portal->nodes[0] == node)
                        {
                              *portalpointer = portal->next[0];
                              portal->nodes[0] = NULL;
                        }
                        else if (portal->nodes[1] == node)
                        {
                              *portalpointer = portal->next[1];
                              portal->nodes[1] = NULL;
                        }
                        else
                              Host_Error("RemovePortalFromNodes: portal not bounding leaf");
                        break;
                  }

                  if (t->nodes[0] == node)
                        portalpointer = (void **) &t->next[0];
                  else if (t->nodes[1] == node)
                        portalpointer = (void **) &t->next[1];
                  else
                        Host_Error("RemovePortalFromNodes: portal not bounding leaf");
            }
      }
}

#define PORTAL_DIST_EPSILON (1.0 / 32.0)
static double *portalpointsbuffer;
static int portalpointsbufferoffset;
static int portalpointsbuffersize;
static void Mod_Q1BSP_RecursiveNodePortals(mnode_t *node)
{
      int i, side;
      mnode_t *front, *back, *other_node;
      mplane_t clipplane, *plane;
      portal_t *portal, *nextportal, *nodeportal, *splitportal, *temp;
      int numfrontpoints, numbackpoints;
      double *frontpoints, *backpoints;

      // if a leaf, we're done
      if (!node->plane)
            return;

      // get some space for our clipping operations to use
      if (portalpointsbuffersize < portalpointsbufferoffset + 6*MAX_PORTALPOINTS)
      {
            portalpointsbuffersize = portalpointsbufferoffset * 2;
            portalpointsbuffer = (double *)Mem_Realloc(loadmodel->mempool, portalpointsbuffer, portalpointsbuffersize * sizeof(*portalpointsbuffer));
      }
      frontpoints = portalpointsbuffer + portalpointsbufferoffset;
      portalpointsbufferoffset += 3*MAX_PORTALPOINTS;
      backpoints = portalpointsbuffer + portalpointsbufferoffset;
      portalpointsbufferoffset += 3*MAX_PORTALPOINTS;

      plane = node->plane;

      front = node->children[0];
      back = node->children[1];
      if (front == back)
            Host_Error("Mod_Q1BSP_RecursiveNodePortals: corrupt node hierarchy");

      // create the new portal by generating a polygon for the node plane,
      // and clipping it by all of the other portals(which came from nodes above this one)
      nodeportal = (portal_t *)Mem_ExpandableArray_AllocRecord(&portalarray);
      nodeportal->plane = *plane;

      // TODO: calculate node bounding boxes during recursion and calculate a maximum plane size accordingly to improve precision (as most maps do not need 1 billion unit plane polygons)
      PolygonD_QuadForPlane(nodeportal->points, nodeportal->plane.normal[0], nodeportal->plane.normal[1], nodeportal->plane.normal[2], nodeportal->plane.dist, 1024.0*1024.0*1024.0);
      nodeportal->numpoints = 4;
      side = 0;   // shut up compiler warning
      for (portal = (portal_t *)node->portals;portal;portal = portal->next[side])
      {
            clipplane = portal->plane;
            if (portal->nodes[0] == portal->nodes[1])
                  Host_Error("Mod_Q1BSP_RecursiveNodePortals: portal has same node on both sides(1)");
            if (portal->nodes[0] == node)
                  side = 0;
            else if (portal->nodes[1] == node)
            {
                  clipplane.dist = -clipplane.dist;
                  VectorNegate(clipplane.normal, clipplane.normal);
                  side = 1;
            }
            else
                  Host_Error("Mod_Q1BSP_RecursiveNodePortals: mislinked portal");

            for (i = 0;i < nodeportal->numpoints*3;i++)
                  frontpoints[i] = nodeportal->points[i];
            PolygonD_Divide(nodeportal->numpoints, frontpoints, clipplane.normal[0], clipplane.normal[1], clipplane.normal[2], clipplane.dist, PORTAL_DIST_EPSILON, MAX_PORTALPOINTS, nodeportal->points, &nodeportal->numpoints, 0, NULL, NULL, NULL);
            if (nodeportal->numpoints <= 0 || nodeportal->numpoints >= MAX_PORTALPOINTS)
                  break;
      }

      if (nodeportal->numpoints < 3)
      {
            Con_Print("Mod_Q1BSP_RecursiveNodePortals: WARNING: new portal was clipped away\n");
            nodeportal->numpoints = 0;
      }
      else if (nodeportal->numpoints >= MAX_PORTALPOINTS)
      {
            Con_Print("Mod_Q1BSP_RecursiveNodePortals: WARNING: new portal has too many points\n");
            nodeportal->numpoints = 0;
      }

      AddPortalToNodes(nodeportal, front, back);

      // split the portals of this node along this node's plane and assign them to the children of this node
      // (migrating the portals downward through the tree)
      for (portal = (portal_t *)node->portals;portal;portal = nextportal)
      {
            if (portal->nodes[0] == portal->nodes[1])
                  Host_Error("Mod_Q1BSP_RecursiveNodePortals: portal has same node on both sides(2)");
            if (portal->nodes[0] == node)
                  side = 0;
            else if (portal->nodes[1] == node)
                  side = 1;
            else
                  Host_Error("Mod_Q1BSP_RecursiveNodePortals: mislinked portal");
            nextportal = portal->next[side];
            if (!portal->numpoints)
                  continue;

            other_node = portal->nodes[!side];
            RemovePortalFromNodes(portal);

            // cut the portal into two portals, one on each side of the node plane
            PolygonD_Divide(portal->numpoints, portal->points, plane->normal[0], plane->normal[1], plane->normal[2], plane->dist, PORTAL_DIST_EPSILON, MAX_PORTALPOINTS, frontpoints, &numfrontpoints, MAX_PORTALPOINTS, backpoints, &numbackpoints, NULL);

            if (!numfrontpoints)
            {
                  if (side == 0)
                        AddPortalToNodes(portal, back, other_node);
                  else
                        AddPortalToNodes(portal, other_node, back);
                  continue;
            }
            if (!numbackpoints)
            {
                  if (side == 0)
                        AddPortalToNodes(portal, front, other_node);
                  else
                        AddPortalToNodes(portal, other_node, front);
                  continue;
            }

            // the portal is split
            splitportal = (portal_t *)Mem_ExpandableArray_AllocRecord(&portalarray);
            temp = splitportal->chain;
            *splitportal = *portal;
            splitportal->chain = temp;
            for (i = 0;i < numbackpoints*3;i++)
                  splitportal->points[i] = backpoints[i];
            splitportal->numpoints = numbackpoints;
            for (i = 0;i < numfrontpoints*3;i++)
                  portal->points[i] = frontpoints[i];
            portal->numpoints = numfrontpoints;

            if (side == 0)
            {
                  AddPortalToNodes(portal, front, other_node);
                  AddPortalToNodes(splitportal, back, other_node);
            }
            else
            {
                  AddPortalToNodes(portal, other_node, front);
                  AddPortalToNodes(splitportal, other_node, back);
            }
      }

      Mod_Q1BSP_RecursiveNodePortals(front);
      Mod_Q1BSP_RecursiveNodePortals(back);

      portalpointsbufferoffset -= 6*MAX_PORTALPOINTS;
}

static void Mod_Q1BSP_MakePortals(void)
{
      Mem_ExpandableArray_NewArray(&portalarray, loadmodel->mempool, sizeof(portal_t), 1020*1024/sizeof(portal_t));
      portalpointsbufferoffset = 0;
      portalpointsbuffersize = 6*MAX_PORTALPOINTS*128;
      portalpointsbuffer = (double *)Mem_Alloc(loadmodel->mempool, portalpointsbuffersize * sizeof(*portalpointsbuffer));
      Mod_Q1BSP_RecursiveNodePortals(loadmodel->brush.data_nodes + loadmodel->brushq1.hulls[0].firstclipnode);
      Mem_Free(portalpointsbuffer);
      portalpointsbuffer = NULL;
      portalpointsbufferoffset = 0;
      portalpointsbuffersize = 0;
      Mod_Q1BSP_FinalizePortals();
      Mem_ExpandableArray_FreeArray(&portalarray);
}

//Returns PVS data for a given point
//(note: can return NULL)
static unsigned char *Mod_Q1BSP_GetPVS(dp_model_t *model, const vec3_t p)
{
      mnode_t *node;
      node = model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode;
      while (node->plane)
            node = node->children[(node->plane->type < 3 ? p[node->plane->type] : DotProduct(p,node->plane->normal)) < node->plane->dist];
      if (((mleaf_t *)node)->clusterindex >= 0)
            return model->brush.data_pvsclusters + ((mleaf_t *)node)->clusterindex * model->brush.num_pvsclusterbytes;
      else
            return NULL;
}

static void Mod_Q1BSP_FatPVS_RecursiveBSPNode(dp_model_t *model, const vec3_t org, vec_t radius, unsigned char *pvsbuffer, int pvsbytes, mnode_t *node)
{
      while (node->plane)
      {
            float d = PlaneDiff(org, node->plane);
            if (d > radius)
                  node = node->children[0];
            else if (d < -radius)
                  node = node->children[1];
            else
            {
                  // go down both sides
                  Mod_Q1BSP_FatPVS_RecursiveBSPNode(model, org, radius, pvsbuffer, pvsbytes, node->children[0]);
                  node = node->children[1];
            }
      }
      // if this leaf is in a cluster, accumulate the pvs bits
      if (((mleaf_t *)node)->clusterindex >= 0)
      {
            int i;
            unsigned char *pvs = model->brush.data_pvsclusters + ((mleaf_t *)node)->clusterindex * model->brush.num_pvsclusterbytes;
            for (i = 0;i < pvsbytes;i++)
                  pvsbuffer[i] |= pvs[i];
      }
}

//Calculates a PVS that is the inclusive or of all leafs within radius pixels
//of the given point.
static int Mod_Q1BSP_FatPVS(dp_model_t *model, const vec3_t org, vec_t radius, unsigned char *pvsbuffer, int pvsbufferlength, qboolean merge)
{
      int bytes = model->brush.num_pvsclusterbytes;
      bytes = min(bytes, pvsbufferlength);
      if (r_novis.integer || r_trippy.integer || !model->brush.num_pvsclusters || !Mod_Q1BSP_GetPVS(model, org))
      {
            memset(pvsbuffer, 0xFF, bytes);
            return bytes;
      }
      if (!merge)
            memset(pvsbuffer, 0, bytes);
      Mod_Q1BSP_FatPVS_RecursiveBSPNode(model, org, radius, pvsbuffer, bytes, model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode);
      return bytes;
}

static void Mod_Q1BSP_RoundUpToHullSize(dp_model_t *cmodel, const vec3_t inmins, const vec3_t inmaxs, vec3_t outmins, vec3_t outmaxs)
{
      vec3_t size;
      const hull_t *hull;

      VectorSubtract(inmaxs, inmins, size);
      if (cmodel->brush.ishlbsp)
      {
            if (size[0] < 3)
                  hull = &cmodel->brushq1.hulls[0]; // 0x0x0
            else if (size[0] <= 32)
            {
                  if (size[2] < 54) // pick the nearest of 36 or 72
                        hull = &cmodel->brushq1.hulls[3]; // 32x32x36
                  else
                        hull = &cmodel->brushq1.hulls[1]; // 32x32x72
            }
            else
                  hull = &cmodel->brushq1.hulls[2]; // 64x64x64
      }
      else
      {
            if (size[0] < 3)
                  hull = &cmodel->brushq1.hulls[0]; // 0x0x0
            else if (size[0] <= 32)
                  hull = &cmodel->brushq1.hulls[1]; // 32x32x56
            else
                  hull = &cmodel->brushq1.hulls[2]; // 64x64x88
      }
      VectorCopy(inmins, outmins);
      VectorAdd(inmins, hull->clip_size, outmaxs);
}

static int Mod_Q1BSP_CreateShadowMesh(dp_model_t *mod)
{
      int j;
      int numshadowmeshtriangles = 0;
      msurface_t *surface;
      if (cls.state == ca_dedicated)
            return 0;
      // make a single combined shadow mesh to allow optimized shadow volume creation

      for (j = 0, surface = mod->data_surfaces;j < mod->num_surfaces;j++, surface++)
      {
            surface->num_firstshadowmeshtriangle = numshadowmeshtriangles;
            numshadowmeshtriangles += surface->num_triangles;
      }
      mod->brush.shadowmesh = Mod_ShadowMesh_Begin(mod->mempool, numshadowmeshtriangles * 3, numshadowmeshtriangles, NULL, NULL, NULL, false, false, true);
      for (j = 0, surface = mod->data_surfaces;j < mod->num_surfaces;j++, surface++)
            if (surface->num_triangles > 0)
                  Mod_ShadowMesh_AddMesh(mod->mempool, mod->brush.shadowmesh, NULL, NULL, NULL, mod->surfmesh.data_vertex3f, NULL, NULL, NULL, NULL, surface->num_triangles, (mod->surfmesh.data_element3i + 3 * surface->num_firsttriangle));
      mod->brush.shadowmesh = Mod_ShadowMesh_Finish(mod->mempool, mod->brush.shadowmesh, false, r_enableshadowvolumes.integer != 0, false);
      if (mod->brush.shadowmesh && mod->brush.shadowmesh->neighbor3i)
            Mod_BuildTriangleNeighbors(mod->brush.shadowmesh->neighbor3i, mod->brush.shadowmesh->element3i, mod->brush.shadowmesh->numtriangles);

      return numshadowmeshtriangles;
}

void Mod_CollisionBIH_TraceLineAgainstSurfaces(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask);

void Mod_Q1BSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
      int i, j, k;
      dheader_t *header;
      dmodel_t *bm;
      float dist, modelyawradius, modelradius;
      msurface_t *surface;
      hullinfo_t hullinfo;
      int totalstylesurfaces, totalstyles, stylecounts[256], remapstyles[256];
      model_brush_lightstyleinfo_t styleinfo[256];
      unsigned char *datapointer;

      mod->modeldatatypestring = "Q1BSP";

      mod->type = mod_brushq1;

      header = (dheader_t *)buffer;

      i = LittleLong(header->version);
      if (i != BSPVERSION && i != 30)
            Host_Error("Mod_Q1BSP_Load: %s has wrong version number(%i should be %i(Quake) or 30(HalfLife)", mod->name, i, BSPVERSION);
      mod->brush.ishlbsp = i == 30;

// fill in hull info
      VectorClear (hullinfo.hullsizes[0][0]);
      VectorClear (hullinfo.hullsizes[0][1]);
      if (mod->brush.ishlbsp)
      {
            mod->modeldatatypestring = "HLBSP";

            hullinfo.filehulls = 4;
            VectorSet (hullinfo.hullsizes[1][0], -16, -16, -36);
            VectorSet (hullinfo.hullsizes[1][1], 16, 16, 36);
            VectorSet (hullinfo.hullsizes[2][0], -32, -32, -32);
            VectorSet (hullinfo.hullsizes[2][1], 32, 32, 32);
            VectorSet (hullinfo.hullsizes[3][0], -16, -16, -18);
            VectorSet (hullinfo.hullsizes[3][1], 16, 16, 18);
      }
      else
      {
            hullinfo.filehulls = 4;
            VectorSet (hullinfo.hullsizes[1][0], -16, -16, -24);
            VectorSet (hullinfo.hullsizes[1][1], 16, 16, 32);
            VectorSet (hullinfo.hullsizes[2][0], -32, -32, -24);
            VectorSet (hullinfo.hullsizes[2][1], 32, 32, 64);
      }

// read lumps
      mod_base = (unsigned char*)buffer;
      for (i = 0; i < HEADER_LUMPS; i++)
      {
            header->lumps[i].fileofs = LittleLong(header->lumps[i].fileofs);
            header->lumps[i].filelen = LittleLong(header->lumps[i].filelen);
      }

      mod->soundfromcenter = true;
      mod->TraceBox = Mod_Q1BSP_TraceBox;
      if (sv_gameplayfix_q1bsptracelinereportstexture.integer)
            mod->TraceLine = Mod_Q1BSP_TraceLineAgainstSurfaces; // LordHavoc: use the surface-hitting version of TraceLine in all cases
      else
            mod->TraceLine = Mod_Q1BSP_TraceLine;
      mod->TracePoint = Mod_Q1BSP_TracePoint;
      mod->PointSuperContents = Mod_Q1BSP_PointSuperContents;
      mod->TraceLineAgainstSurfaces = Mod_Q1BSP_TraceLineAgainstSurfaces;
      mod->brush.TraceLineOfSight = Mod_Q1BSP_TraceLineOfSight;
      mod->brush.SuperContentsFromNativeContents = Mod_Q1BSP_SuperContentsFromNativeContents;
      mod->brush.NativeContentsFromSuperContents = Mod_Q1BSP_NativeContentsFromSuperContents;
      mod->brush.GetPVS = Mod_Q1BSP_GetPVS;
      mod->brush.FatPVS = Mod_Q1BSP_FatPVS;
      mod->brush.BoxTouchingPVS = Mod_Q1BSP_BoxTouchingPVS;
      mod->brush.BoxTouchingLeafPVS = Mod_Q1BSP_BoxTouchingLeafPVS;
      mod->brush.BoxTouchingVisibleLeafs = Mod_Q1BSP_BoxTouchingVisibleLeafs;
      mod->brush.FindBoxClusters = Mod_Q1BSP_FindBoxClusters;
      mod->brush.LightPoint = Mod_Q1BSP_LightPoint;
      mod->brush.FindNonSolidLocation = Mod_Q1BSP_FindNonSolidLocation;
      mod->brush.AmbientSoundLevelsForPoint = Mod_Q1BSP_AmbientSoundLevelsForPoint;
      mod->brush.RoundUpToHullSize = Mod_Q1BSP_RoundUpToHullSize;
      mod->brush.PointInLeaf = Mod_Q1BSP_PointInLeaf;
      mod->Draw = R_Q1BSP_Draw;
      mod->DrawDepth = R_Q1BSP_DrawDepth;
      mod->DrawDebug = R_Q1BSP_DrawDebug;
      mod->DrawPrepass = R_Q1BSP_DrawPrepass;
      mod->GetLightInfo = R_Q1BSP_GetLightInfo;
      mod->CompileShadowMap = R_Q1BSP_CompileShadowMap;
      mod->DrawShadowMap = R_Q1BSP_DrawShadowMap;
      mod->CompileShadowVolume = R_Q1BSP_CompileShadowVolume;
      mod->DrawShadowVolume = R_Q1BSP_DrawShadowVolume;
      mod->DrawLight = R_Q1BSP_DrawLight;

// load into heap

      mod->brush.qw_md4sum = 0;
      mod->brush.qw_md4sum2 = 0;
      for (i = 0;i < HEADER_LUMPS;i++)
      {
            int temp;
            if (i == LUMP_ENTITIES)
                  continue;
            temp = Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
            mod->brush.qw_md4sum ^= LittleLong(temp);
            if (i == LUMP_VISIBILITY || i == LUMP_LEAFS || i == LUMP_NODES)
                  continue;
            temp = Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
            mod->brush.qw_md4sum2 ^= LittleLong(temp);
      }

      Mod_Q1BSP_LoadEntities(&header->lumps[LUMP_ENTITIES]);
      Mod_Q1BSP_LoadVertexes(&header->lumps[LUMP_VERTEXES]);
      Mod_Q1BSP_LoadEdges(&header->lumps[LUMP_EDGES]);
      Mod_Q1BSP_LoadSurfedges(&header->lumps[LUMP_SURFEDGES]);
      Mod_Q1BSP_LoadTextures(&header->lumps[LUMP_TEXTURES]);
      Mod_Q1BSP_LoadLighting(&header->lumps[LUMP_LIGHTING]);
      Mod_Q1BSP_LoadPlanes(&header->lumps[LUMP_PLANES]);
      Mod_Q1BSP_LoadTexinfo(&header->lumps[LUMP_TEXINFO]);
      Mod_Q1BSP_LoadFaces(&header->lumps[LUMP_FACES]);
      Mod_Q1BSP_LoadLeaffaces(&header->lumps[LUMP_MARKSURFACES]);
      Mod_Q1BSP_LoadVisibility(&header->lumps[LUMP_VISIBILITY]);
      // load submodels before leafs because they contain the number of vis leafs
      Mod_Q1BSP_LoadSubmodels(&header->lumps[LUMP_MODELS], &hullinfo);
      Mod_Q1BSP_LoadLeafs(&header->lumps[LUMP_LEAFS]);
      Mod_Q1BSP_LoadNodes(&header->lumps[LUMP_NODES]);
      Mod_Q1BSP_LoadClipnodes(&header->lumps[LUMP_CLIPNODES], &hullinfo);

      // check if the map supports transparent water rendering
      loadmodel->brush.supportwateralpha = Mod_Q1BSP_CheckWaterAlphaSupport();

      if (mod->brushq1.data_compressedpvs)
            Mem_Free(mod->brushq1.data_compressedpvs);
      mod->brushq1.data_compressedpvs = NULL;
      mod->brushq1.num_compressedpvs = 0;

      Mod_Q1BSP_MakeHull0();
      if (mod_bsp_portalize.integer)
            Mod_Q1BSP_MakePortals();

      mod->numframes = 2;           // regular and alternate animation
      mod->numskins = 1;

      // make a single combined shadow mesh to allow optimized shadow volume creation
      Mod_Q1BSP_CreateShadowMesh(loadmodel);

      if (loadmodel->brush.numsubmodels)
            loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *));

      // LordHavoc: to clear the fog around the original quake submodel code, I
      // will explain:
      // first of all, some background info on the submodels:
      // model 0 is the map model (the world, named maps/e1m1.bsp for example)
      // model 1 and higher are submodels (doors and the like, named *1, *2, etc)
      // now the weird for loop itself:
      // the loop functions in an odd way, on each iteration it sets up the
      // current 'mod' model (which despite the confusing code IS the model of
      // the number i), at the end of the loop it duplicates the model to become
      // the next submodel, and loops back to set up the new submodel.

      // LordHavoc: now the explanation of my sane way (which works identically):
      // set up the world model, then on each submodel copy from the world model
      // and set up the submodel with the respective model info.
      totalstylesurfaces = 0;
      totalstyles = 0;
      for (i = 0;i < mod->brush.numsubmodels;i++)
      {
            memset(stylecounts, 0, sizeof(stylecounts));
            for (k = 0;k < mod->brushq1.submodels[i].numfaces;k++)
            {
                  surface = mod->data_surfaces + mod->brushq1.submodels[i].firstface + k;
                  for (j = 0;j < MAXLIGHTMAPS;j++)
                        stylecounts[surface->lightmapinfo->styles[j]]++;
            }
            for (k = 0;k < 255;k++)
            {
                  totalstyles++;
                  if (stylecounts[k])
                        totalstylesurfaces += stylecounts[k];
            }
      }
      datapointer = (unsigned char *)Mem_Alloc(mod->mempool, mod->num_surfaces * sizeof(int) + totalstyles * sizeof(model_brush_lightstyleinfo_t) + totalstylesurfaces * sizeof(int *));
      for (i = 0;i < mod->brush.numsubmodels;i++)
      {
            // LordHavoc: this code was originally at the end of this loop, but
            // has been transformed to something more readable at the start here.

            if (i > 0)
            {
                  char name[10];
                  // duplicate the basic information
                  dpsnprintf(name, sizeof(name), "*%i", i);
                  mod = Mod_FindName(name, loadmodel->name);
                  // copy the base model to this one
                  *mod = *loadmodel;
                  // rename the clone back to its proper name
                  strlcpy(mod->name, name, sizeof(mod->name));
                  mod->brush.parentmodel = loadmodel;
                  // textures and memory belong to the main model
                  mod->texturepool = NULL;
                  mod->mempool = NULL;
                  mod->brush.GetPVS = NULL;
                  mod->brush.FatPVS = NULL;
                  mod->brush.BoxTouchingPVS = NULL;
                  mod->brush.BoxTouchingLeafPVS = NULL;
                  mod->brush.BoxTouchingVisibleLeafs = NULL;
                  mod->brush.FindBoxClusters = NULL;
                  mod->brush.LightPoint = NULL;
                  mod->brush.AmbientSoundLevelsForPoint = NULL;
            }

            mod->brush.submodel = i;

            if (loadmodel->brush.submodels)
                  loadmodel->brush.submodels[i] = mod;

            bm = &mod->brushq1.submodels[i];

            mod->brushq1.hulls[0].firstclipnode = bm->headnode[0];
            for (j=1 ; j<MAX_MAP_HULLS ; j++)
            {
                  mod->brushq1.hulls[j].firstclipnode = bm->headnode[j];
                  mod->brushq1.hulls[j].lastclipnode = mod->brushq1.numclipnodes - 1;
            }

            mod->firstmodelsurface = bm->firstface;
            mod->nummodelsurfaces = bm->numfaces;

            // set node/leaf parents for this submodel
            Mod_Q1BSP_LoadNodes_RecursiveSetParent(mod->brush.data_nodes + mod->brushq1.hulls[0].firstclipnode, NULL);

            // make the model surface list (used by shadowing/lighting)
            mod->sortedmodelsurfaces = (int *)datapointer;datapointer += mod->nummodelsurfaces * sizeof(int);
            Mod_MakeSortedSurfaces(mod);

            // copy the submodel bounds, then enlarge the yaw and rotated bounds according to radius
            // (previously this code measured the radius of the vertices of surfaces in the submodel, but that broke submodels that contain only CLIP brushes, which do not produce surfaces)
            VectorCopy(bm->mins, mod->normalmins);
            VectorCopy(bm->maxs, mod->normalmaxs);
            dist = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0]));
            modelyawradius = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1]));
            modelyawradius = dist*dist+modelyawradius*modelyawradius;
            modelradius = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2]));
            modelradius = modelyawradius + modelradius * modelradius;
            modelyawradius = sqrt(modelyawradius);
            modelradius = sqrt(modelradius);
            mod->yawmins[0] = mod->yawmins[1] = -modelyawradius;
            mod->yawmins[2] = mod->normalmins[2];
            mod->yawmaxs[0] = mod->yawmaxs[1] =  modelyawradius;
            mod->yawmaxs[2] = mod->normalmaxs[2];
            mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius;
            mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] =  modelradius;
            mod->radius = modelradius;
            mod->radius2 = modelradius * modelradius;

            // this gets altered below if sky or water is used
            mod->DrawSky = NULL;
            mod->DrawAddWaterPlanes = NULL;

            // scan surfaces for sky and water and flag the submodel as possessing these features or not
            // build lightstyle lists for quick marking of dirty lightmaps when lightstyles flicker
            if (mod->nummodelsurfaces)
            {
                  for (j = 0, surface = &mod->data_surfaces[mod->firstmodelsurface];j < mod->nummodelsurfaces;j++, surface++)
                        if (surface->texture->basematerialflags & MATERIALFLAG_SKY)
                              break;
                  if (j < mod->nummodelsurfaces)
                        mod->DrawSky = R_Q1BSP_DrawSky;

                  for (j = 0, surface = &mod->data_surfaces[mod->firstmodelsurface];j < mod->nummodelsurfaces;j++, surface++)
                        if (surface->texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))
                              break;
                  if (j < mod->nummodelsurfaces)
                        mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes;

                  // build lightstyle update chains
                  // (used to rapidly mark lightmapupdateflags on many surfaces
                  // when d_lightstylevalue changes)
                  memset(stylecounts, 0, sizeof(stylecounts));
                  for (k = 0;k < mod->nummodelsurfaces;k++)
                  {
                        surface = mod->data_surfaces + mod->firstmodelsurface + k;
                        for (j = 0;j < MAXLIGHTMAPS;j++)
                              stylecounts[surface->lightmapinfo->styles[j]]++;
                  }
                  mod->brushq1.num_lightstyles = 0;
                  for (k = 0;k < 255;k++)
                  {
                        if (stylecounts[k])
                        {
                              styleinfo[mod->brushq1.num_lightstyles].style = k;
                              styleinfo[mod->brushq1.num_lightstyles].value = 0;
                              styleinfo[mod->brushq1.num_lightstyles].numsurfaces = 0;
                              styleinfo[mod->brushq1.num_lightstyles].surfacelist = (int *)datapointer;datapointer += stylecounts[k] * sizeof(int);
                              remapstyles[k] = mod->brushq1.num_lightstyles;
                              mod->brushq1.num_lightstyles++;
                        }
                  }
                  for (k = 0;k < mod->nummodelsurfaces;k++)
                  {
                        surface = mod->data_surfaces + mod->firstmodelsurface + k;
                        for (j = 0;j < MAXLIGHTMAPS;j++)
                        {
                              if (surface->lightmapinfo->styles[j] != 255)
                              {
                                    int r = remapstyles[surface->lightmapinfo->styles[j]];
                                    styleinfo[r].surfacelist[styleinfo[r].numsurfaces++] = mod->firstmodelsurface + k;
                              }
                        }
                  }
                  mod->brushq1.data_lightstyleinfo = (model_brush_lightstyleinfo_t *)datapointer;datapointer += mod->brushq1.num_lightstyles * sizeof(model_brush_lightstyleinfo_t);
                  memcpy(mod->brushq1.data_lightstyleinfo, styleinfo, mod->brushq1.num_lightstyles * sizeof(model_brush_lightstyleinfo_t));
            }
            else
            {
                  // LordHavoc: empty submodel(lacrima.bsp has such a glitch)
                  Con_Printf("warning: empty submodel *%i in %s\n", i+1, loadmodel->name);
            }
            //mod->brushq1.num_visleafs = bm->visleafs;

            // build a Bounding Interval Hierarchy for culling triangles in light rendering
            Mod_MakeCollisionBIH(mod, true, &mod->render_bih);

            if (mod_q1bsp_polygoncollisions.integer)
            {
                  mod->collision_bih = mod->render_bih;
                  // point traces and contents checks still use the bsp tree
                  mod->TraceLine = Mod_CollisionBIH_TraceLine;
                  mod->TraceBox = Mod_CollisionBIH_TraceBox;
                  mod->TraceBrush = Mod_CollisionBIH_TraceBrush;
                  mod->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLineAgainstSurfaces;
            }

            // generate VBOs and other shared data before cloning submodels
            if (i == 0)
            {
                  Mod_BuildVBOs();
                  Mod_Q1BSP_LoadMapBrushes();
                  //Mod_Q1BSP_ProcessLightList();
            }
      }

      Con_DPrintf("Stats for q1bsp model \"%s\": %i faces, %i nodes, %i leafs, %i visleafs, %i visleafportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces);
}

static void Mod_Q2BSP_LoadEntities(lump_t *l)
{
}

static void Mod_Q2BSP_LoadPlanes(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadPlanes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadVertices(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadVertices: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadVisibility(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadVisibility: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadNodes(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadNodes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadTexInfo(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadTexInfo: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadFaces(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadFaces: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadLighting(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadLighting: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadLeafs(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadLeafFaces(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadLeafFaces: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadLeafBrushes(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadLeafBrushes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadEdges(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadEdges: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadSurfEdges(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadSurfEdges: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadBrushes(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadBrushes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadBrushSides(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadBrushSides: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadAreas(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadAreas: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadAreaPortals(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadAreaPortals: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

static void Mod_Q2BSP_LoadModels(lump_t *l)
{
/*
      d_t *in;
      m_t *out;
      int i, count;

      in = (void *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q2BSP_LoadModels: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel-> = out;
      loadmodel->num = count;

      for (i = 0;i < count;i++, in++, out++)
      {
      }
*/
}

void static Mod_Q2BSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
      int i;
      q2dheader_t *header;

      Host_Error("Mod_Q2BSP_Load: not yet implemented");

      mod->modeldatatypestring = "Q2BSP";

      mod->type = mod_brushq2;

      header = (q2dheader_t *)buffer;

      i = LittleLong(header->version);
      if (i != Q2BSPVERSION)
            Host_Error("Mod_Q2BSP_Load: %s has wrong version number (%i, should be %i)", mod->name, i, Q2BSPVERSION);

      mod_base = (unsigned char *)header;

      // swap all the lumps
      for (i = 0;i < (int) sizeof(*header) / 4;i++)
            ((int *)header)[i] = LittleLong(((int *)header)[i]);

      mod->brush.qw_md4sum = 0;
      mod->brush.qw_md4sum2 = 0;
      for (i = 0;i < Q2HEADER_LUMPS;i++)
      {
            if (i == Q2LUMP_ENTITIES)
                  continue;
            mod->brush.qw_md4sum ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
            if (i == Q2LUMP_VISIBILITY || i == Q2LUMP_LEAFS || i == Q2LUMP_NODES)
                  continue;
            mod->brush.qw_md4sum2 ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
      }

      Mod_Q2BSP_LoadEntities(&header->lumps[Q2LUMP_ENTITIES]);
      Mod_Q2BSP_LoadPlanes(&header->lumps[Q2LUMP_PLANES]);
      Mod_Q2BSP_LoadVertices(&header->lumps[Q2LUMP_VERTEXES]);
      Mod_Q2BSP_LoadVisibility(&header->lumps[Q2LUMP_VISIBILITY]);
      Mod_Q2BSP_LoadNodes(&header->lumps[Q2LUMP_NODES]);
      Mod_Q2BSP_LoadTexInfo(&header->lumps[Q2LUMP_TEXINFO]);
      Mod_Q2BSP_LoadFaces(&header->lumps[Q2LUMP_FACES]);
      Mod_Q2BSP_LoadLighting(&header->lumps[Q2LUMP_LIGHTING]);
      Mod_Q2BSP_LoadLeafs(&header->lumps[Q2LUMP_LEAFS]);
      Mod_Q2BSP_LoadLeafFaces(&header->lumps[Q2LUMP_LEAFFACES]);
      Mod_Q2BSP_LoadLeafBrushes(&header->lumps[Q2LUMP_LEAFBRUSHES]);
      Mod_Q2BSP_LoadEdges(&header->lumps[Q2LUMP_EDGES]);
      Mod_Q2BSP_LoadSurfEdges(&header->lumps[Q2LUMP_SURFEDGES]);
      Mod_Q2BSP_LoadBrushes(&header->lumps[Q2LUMP_BRUSHES]);
      Mod_Q2BSP_LoadBrushSides(&header->lumps[Q2LUMP_BRUSHSIDES]);
      Mod_Q2BSP_LoadAreas(&header->lumps[Q2LUMP_AREAS]);
      Mod_Q2BSP_LoadAreaPortals(&header->lumps[Q2LUMP_AREAPORTALS]);
      // LordHavoc: must go last because this makes the submodels
      Mod_Q2BSP_LoadModels(&header->lumps[Q2LUMP_MODELS]);
}

static int Mod_Q3BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents);
static int Mod_Q3BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents);

static void Mod_Q3BSP_LoadEntities(lump_t *l)
{
      const char *data;
      char key[128], value[MAX_INPUTLINE];
      float v[3];
      loadmodel->brushq3.num_lightgrid_cellsize[0] = 64;
      loadmodel->brushq3.num_lightgrid_cellsize[1] = 64;
      loadmodel->brushq3.num_lightgrid_cellsize[2] = 128;
      if (!l->filelen)
            return;
      loadmodel->brush.entities = (char *)Mem_Alloc(loadmodel->mempool, l->filelen + 1);
      memcpy(loadmodel->brush.entities, mod_base + l->fileofs, l->filelen);
      loadmodel->brush.entities[l->filelen] = 0;
      data = loadmodel->brush.entities;
      // some Q3 maps override the lightgrid_cellsize with a worldspawn key
      // VorteX: q3map2 FS-R generates tangentspace deluxemaps for q3bsp and sets 'deluxeMaps' key
      loadmodel->brushq3.deluxemapping = false;
      if (data && COM_ParseToken_Simple(&data, false, false) && com_token[0] == '{')
      {
            while (1)
            {
                  if (!COM_ParseToken_Simple(&data, false, false))
                        break; // error
                  if (com_token[0] == '}')
                        break; // end of worldspawn
                  if (com_token[0] == '_')
                        strlcpy(key, com_token + 1, sizeof(key));
                  else
                        strlcpy(key, com_token, sizeof(key));
                  while (key[strlen(key)-1] == ' ') // remove trailing spaces
                        key[strlen(key)-1] = 0;
                  if (!COM_ParseToken_Simple(&data, false, false))
                        break; // error
                  strlcpy(value, com_token, sizeof(value));
                  if (!strcasecmp("gridsize", key)) // this one is case insensitive to 100% match q3map2
                  {
#if _MSC_VER >= 1400
#define sscanf sscanf_s
#endif
#if 0
                        if (sscanf(value, "%f %f %f", &v[0], &v[1], &v[2]) == 3 && v[0] != 0 && v[1] != 0 && v[2] != 0)
                              VectorCopy(v, loadmodel->brushq3.num_lightgrid_cellsize);
#else
                        VectorSet(v, 64, 64, 128);
                        if(sscanf(value, "%f %f %f", &v[0], &v[1], &v[2]) != 3)
                              Con_Printf("Mod_Q3BSP_LoadEntities: funny gridsize \"%s\" in %s, interpreting as \"%f %f %f\" to match q3map2's parsing\n", value, loadmodel->name, v[0], v[1], v[2]);
                        if (v[0] != 0 && v[1] != 0 && v[2] != 0)
                              VectorCopy(v, loadmodel->brushq3.num_lightgrid_cellsize);
#endif
                  }
                  else if (!strcmp("deluxeMaps", key))
                  {
                        if (!strcmp(com_token, "1"))
                        {
                              loadmodel->brushq3.deluxemapping = true;
                              loadmodel->brushq3.deluxemapping_modelspace = true;
                        }
                        else if (!strcmp(com_token, "2"))
                        {
                              loadmodel->brushq3.deluxemapping = true;
                              loadmodel->brushq3.deluxemapping_modelspace = false;
                        }
                  }
            }
      }
}

static void Mod_Q3BSP_LoadTextures(lump_t *l)
{
      q3dtexture_t *in;
      texture_t *out;
      int i, count;

      in = (q3dtexture_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadTextures: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (texture_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->data_textures = out;
      loadmodel->num_textures = count;
      loadmodel->num_texturesperskin = loadmodel->num_textures;

      for (i = 0;i < count;i++)
      {
            strlcpy (out[i].name, in[i].name, sizeof (out[i].name));
            out[i].surfaceflags = LittleLong(in[i].surfaceflags);
            out[i].supercontents = Mod_Q3BSP_SuperContentsFromNativeContents(loadmodel, LittleLong(in[i].contents));
            Mod_LoadTextureFromQ3Shader(out + i, out[i].name, true, true, TEXF_MIPMAP | TEXF_ISWORLD | TEXF_PICMIP | TEXF_COMPRESS);
            // restore the surfaceflags and supercontents
            out[i].surfaceflags = LittleLong(in[i].surfaceflags);
            out[i].supercontents = Mod_Q3BSP_SuperContentsFromNativeContents(loadmodel, LittleLong(in[i].contents));
      }
}

static void Mod_Q3BSP_LoadPlanes(lump_t *l)
{
      q3dplane_t *in;
      mplane_t *out;
      int i, count;

      in = (q3dplane_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadPlanes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (mplane_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_planes = out;
      loadmodel->brush.num_planes = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            out->normal[0] = LittleFloat(in->normal[0]);
            out->normal[1] = LittleFloat(in->normal[1]);
            out->normal[2] = LittleFloat(in->normal[2]);
            out->dist = LittleFloat(in->dist);
            PlaneClassify(out);
      }
}

static void Mod_Q3BSP_LoadBrushSides(lump_t *l)
{
      q3dbrushside_t *in;
      q3mbrushside_t *out;
      int i, n, count;

      in = (q3dbrushside_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadBrushSides: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (q3mbrushside_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_brushsides = out;
      loadmodel->brush.num_brushsides = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            n = LittleLong(in->planeindex);
            if (n < 0 || n >= loadmodel->brush.num_planes)
                  Host_Error("Mod_Q3BSP_LoadBrushSides: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes);
            out->plane = loadmodel->brush.data_planes + n;
            n = LittleLong(in->textureindex);
            if (n < 0 || n >= loadmodel->num_textures)
                  Host_Error("Mod_Q3BSP_LoadBrushSides: invalid textureindex %i (%i textures)", n, loadmodel->num_textures);
            out->texture = loadmodel->data_textures + n;
      }
}

static void Mod_Q3BSP_LoadBrushSides_IG(lump_t *l)
{
      q3dbrushside_ig_t *in;
      q3mbrushside_t *out;
      int i, n, count;

      in = (q3dbrushside_ig_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadBrushSides: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (q3mbrushside_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_brushsides = out;
      loadmodel->brush.num_brushsides = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            n = LittleLong(in->planeindex);
            if (n < 0 || n >= loadmodel->brush.num_planes)
                  Host_Error("Mod_Q3BSP_LoadBrushSides: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes);
            out->plane = loadmodel->brush.data_planes + n;
            n = LittleLong(in->textureindex);
            if (n < 0 || n >= loadmodel->num_textures)
                  Host_Error("Mod_Q3BSP_LoadBrushSides: invalid textureindex %i (%i textures)", n, loadmodel->num_textures);
            out->texture = loadmodel->data_textures + n;
      }
}

static void Mod_Q3BSP_LoadBrushes(lump_t *l)
{
      q3dbrush_t *in;
      q3mbrush_t *out;
      int i, j, n, c, count, maxplanes, q3surfaceflags;
      colplanef_t *planes;

      in = (q3dbrush_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadBrushes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (q3mbrush_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_brushes = out;
      loadmodel->brush.num_brushes = count;

      maxplanes = 0;
      planes = NULL;

      for (i = 0;i < count;i++, in++, out++)
      {
            n = LittleLong(in->firstbrushside);
            c = LittleLong(in->numbrushsides);
            if (n < 0 || n + c > loadmodel->brush.num_brushsides)
                  Host_Error("Mod_Q3BSP_LoadBrushes: invalid brushside range %i : %i (%i brushsides)", n, n + c, loadmodel->brush.num_brushsides);
            out->firstbrushside = loadmodel->brush.data_brushsides + n;
            out->numbrushsides = c;
            n = LittleLong(in->textureindex);
            if (n < 0 || n >= loadmodel->num_textures)
                  Host_Error("Mod_Q3BSP_LoadBrushes: invalid textureindex %i (%i textures)", n, loadmodel->num_textures);
            out->texture = loadmodel->data_textures + n;

            // make a list of mplane_t structs to construct a colbrush from
            if (maxplanes < out->numbrushsides)
            {
                  maxplanes = out->numbrushsides;
                  if (planes)
                        Mem_Free(planes);
                  planes = (colplanef_t *)Mem_Alloc(tempmempool, sizeof(colplanef_t) * maxplanes);
            }
            q3surfaceflags = 0;
            for (j = 0;j < out->numbrushsides;j++)
            {
                  VectorCopy(out->firstbrushside[j].plane->normal, planes[j].normal);
                  planes[j].dist = out->firstbrushside[j].plane->dist;
                  planes[j].q3surfaceflags = out->firstbrushside[j].texture->surfaceflags;
                  planes[j].texture = out->firstbrushside[j].texture;
                  q3surfaceflags |= planes[j].q3surfaceflags;
            }
            // make the colbrush from the planes
            out->colbrushf = Collision_NewBrushFromPlanes(loadmodel->mempool, out->numbrushsides, planes, out->texture->supercontents, q3surfaceflags, out->texture, true);

            // this whole loop can take a while (e.g. on redstarrepublic4)
            CL_KeepaliveMessage(false);
      }
      if (planes)
            Mem_Free(planes);
}

static void Mod_Q3BSP_LoadEffects(lump_t *l)
{
      q3deffect_t *in;
      q3deffect_t *out;
      int i, n, count;

      in = (q3deffect_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadEffects: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (q3deffect_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brushq3.data_effects = out;
      loadmodel->brushq3.num_effects = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            strlcpy (out->shadername, in->shadername, sizeof (out->shadername));
            n = LittleLong(in->brushindex);
            if (n >= loadmodel->brush.num_brushes)
            {
                  Con_Printf("Mod_Q3BSP_LoadEffects: invalid brushindex %i (%i brushes), setting to -1\n", n, loadmodel->brush.num_brushes);
                  n = -1;
            }
            out->brushindex = n;
            out->unknown = LittleLong(in->unknown);
      }
}

static void Mod_Q3BSP_LoadVertices(lump_t *l)
{
      q3dvertex_t *in;
      int i, count;

      in = (q3dvertex_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadVertices: funny lump size in %s",loadmodel->name);
      loadmodel->brushq3.num_vertices = count = l->filelen / sizeof(*in);
      loadmodel->brushq3.data_vertex3f = (float *)Mem_Alloc(loadmodel->mempool, count * (sizeof(float) * (3 + 3 + 2 + 2 + 4)));
      loadmodel->brushq3.data_normal3f = loadmodel->brushq3.data_vertex3f + count * 3;
      loadmodel->brushq3.data_texcoordtexture2f = loadmodel->brushq3.data_normal3f + count * 3;
      loadmodel->brushq3.data_texcoordlightmap2f = loadmodel->brushq3.data_texcoordtexture2f + count * 2;
      loadmodel->brushq3.data_color4f = loadmodel->brushq3.data_texcoordlightmap2f + count * 2;

      for (i = 0;i < count;i++, in++)
      {
            loadmodel->brushq3.data_vertex3f[i * 3 + 0] = LittleFloat(in->origin3f[0]);
            loadmodel->brushq3.data_vertex3f[i * 3 + 1] = LittleFloat(in->origin3f[1]);
            loadmodel->brushq3.data_vertex3f[i * 3 + 2] = LittleFloat(in->origin3f[2]);
            loadmodel->brushq3.data_normal3f[i * 3 + 0] = LittleFloat(in->normal3f[0]);
            loadmodel->brushq3.data_normal3f[i * 3 + 1] = LittleFloat(in->normal3f[1]);
            loadmodel->brushq3.data_normal3f[i * 3 + 2] = LittleFloat(in->normal3f[2]);
            loadmodel->brushq3.data_texcoordtexture2f[i * 2 + 0] = LittleFloat(in->texcoord2f[0]);
            loadmodel->brushq3.data_texcoordtexture2f[i * 2 + 1] = LittleFloat(in->texcoord2f[1]);
            loadmodel->brushq3.data_texcoordlightmap2f[i * 2 + 0] = LittleFloat(in->lightmap2f[0]);
            loadmodel->brushq3.data_texcoordlightmap2f[i * 2 + 1] = LittleFloat(in->lightmap2f[1]);
            // svector/tvector are calculated later in face loading
            loadmodel->brushq3.data_color4f[i * 4 + 0] = in->color4ub[0] * (1.0f / 255.0f);
            loadmodel->brushq3.data_color4f[i * 4 + 1] = in->color4ub[1] * (1.0f / 255.0f);
            loadmodel->brushq3.data_color4f[i * 4 + 2] = in->color4ub[2] * (1.0f / 255.0f);
            loadmodel->brushq3.data_color4f[i * 4 + 3] = in->color4ub[3] * (1.0f / 255.0f);
            if(in->color4ub[0] != 255 || in->color4ub[1] != 255 || in->color4ub[2] != 255)
                  loadmodel->lit = true;
      }
}

static void Mod_Q3BSP_LoadTriangles(lump_t *l)
{
      int *in;
      int *out;
      int i, count;

      in = (int *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(int[3]))
            Host_Error("Mod_Q3BSP_LoadTriangles: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);

      if(!loadmodel->brushq3.num_vertices)
      {
            if (count)
                  Con_Printf("Mod_Q3BSP_LoadTriangles: %s has triangles but no vertexes, broken compiler, ignoring problem\n", loadmodel->name);
            loadmodel->brushq3.num_triangles = 0;
            return;
      }

      out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
      loadmodel->brushq3.num_triangles = count / 3;
      loadmodel->brushq3.data_element3i = out;

      for (i = 0;i < count;i++, in++, out++)
      {
            *out = LittleLong(*in);
            if (*out < 0 || *out >= loadmodel->brushq3.num_vertices)
            {
                  Con_Printf("Mod_Q3BSP_LoadTriangles: invalid vertexindex %i (%i vertices), setting to 0\n", *out, loadmodel->brushq3.num_vertices);
                  *out = 0;
            }
      }
}

static void Mod_Q3BSP_LoadLightmaps(lump_t *l, lump_t *faceslump)
{
      q3dlightmap_t *input_pointer;
      int i;
      int j;
      int k;
      int count;
      int powerx;
      int powery;
      int powerxy;
      int powerdxy;
      int endlightmap;
      int mergegoal;
      int lightmapindex;
      int realcount;
      int realindex;
      int mergedwidth;
      int mergedheight;
      int mergedcolumns;
      int mergedrows;
      int mergedrowsxcolumns;
      int size;
      int bytesperpixel;
      int rgbmap[3];
      unsigned char *c;
      unsigned char *mergedpixels;
      unsigned char *mergeddeluxepixels;
      unsigned char *mergebuf;
      char mapname[MAX_QPATH];
      qboolean external;
      unsigned char *inpixels[10000]; // max count q3map2 can output (it uses 4 digits)

      // defaults for q3bsp
      size = 128;
      bytesperpixel = 3;
      rgbmap[0] = 2;
      rgbmap[1] = 1;
      rgbmap[2] = 0;
      external = false;
      loadmodel->brushq3.lightmapsize = 128;

      if (cls.state == ca_dedicated)
            return;

      if(mod_q3bsp_nolightmaps.integer)
      {
            return;
      }
      else if(l->filelen)
      {
            // prefer internal LMs for compatibility (a BSP contains no info on whether external LMs exist)
            if (developer_loading.integer)
                  Con_Printf("Using internal lightmaps\n");
            input_pointer = (q3dlightmap_t *)(mod_base + l->fileofs);
            if (l->filelen % sizeof(*input_pointer))
                  Host_Error("Mod_Q3BSP_LoadLightmaps: funny lump size in %s",loadmodel->name);
            count = l->filelen / sizeof(*input_pointer);
            for(i = 0; i < count; ++i)
                  inpixels[i] = input_pointer[i].rgb;
      }
      else
      {
            // no internal lightmaps
            // try external lightmaps
            if (developer_loading.integer)
                  Con_Printf("Using external lightmaps\n");
            FS_StripExtension(loadmodel->name, mapname, sizeof(mapname));
            inpixels[0] = loadimagepixelsbgra(va("%s/lm_%04d", mapname, 0), false, false, false, NULL);
            if(!inpixels[0])
                  return;

            // using EXTERNAL lightmaps instead
            if(image_width != (int) CeilPowerOf2(image_width) || image_width != image_height)
            {
                  Mem_Free(inpixels[0]);
                  Host_Error("Mod_Q3BSP_LoadLightmaps: invalid external lightmap size in %s",loadmodel->name);
            }

            size = image_width;
            bytesperpixel = 4;
            rgbmap[0] = 0;
            rgbmap[1] = 1;
            rgbmap[2] = 2;
            external = true;

            for(count = 1; ; ++count)
            {
                  inpixels[count] = loadimagepixelsbgra(va("%s/lm_%04d", mapname, count), false, false, false, NULL);
                  if(!inpixels[count])
                        break; // we got all of them
                  if(image_width != size || image_height != size)
                  {
                        Mem_Free(inpixels[count]);
                        inpixels[count] = NULL;
                        Con_Printf("Mod_Q3BSP_LoadLightmaps: mismatched lightmap size in %s - external lightmap %s/lm_%04d does not match earlier ones\n", loadmodel->name, mapname, count);
                        break;
                  }
            }
      }

      loadmodel->brushq3.lightmapsize = size;
      loadmodel->brushq3.num_originallightmaps = count;

      // now check the surfaces to see if any of them index an odd numbered
      // lightmap, if so this is not a deluxemapped bsp file
      //
      // also check what lightmaps are actually used, because q3map2 sometimes
      // (always?) makes an unused one at the end, which
      // q3map2 sometimes (or always?) makes a second blank lightmap for no
      // reason when only one lightmap is used, which can throw off the
      // deluxemapping detection method, so check 2-lightmap bsp's specifically
      // to see if the second lightmap is blank, if so it is not deluxemapped.
      // VorteX: autodetect only if previous attempt to find "deluxeMaps" key
      // in Mod_Q3BSP_LoadEntities was failed
      if (!loadmodel->brushq3.deluxemapping)
      {
            loadmodel->brushq3.deluxemapping = !(count & 1);
            loadmodel->brushq3.deluxemapping_modelspace = true;
            endlightmap = 0;
            if (loadmodel->brushq3.deluxemapping)
            {
                  int facecount = faceslump->filelen / sizeof(q3dface_t);
                  q3dface_t *faces = (q3dface_t *)(mod_base + faceslump->fileofs);
                  for (i = 0;i < facecount;i++)
                  {
                        j = LittleLong(faces[i].lightmapindex);
                        if (j >= 0)
                        {
                              endlightmap = max(endlightmap, j + 1);
                              if ((j & 1) || j + 1 >= count)
                              {
                                    loadmodel->brushq3.deluxemapping = false;
                                    break;
                              }
                        }
                  }
            }

            // q3map2 sometimes (or always?) makes a second blank lightmap for no
            // reason when only one lightmap is used, which can throw off the
            // deluxemapping detection method, so check 2-lightmap bsp's specifically
            // to see if the second lightmap is blank, if so it is not deluxemapped.
            //
            // further research has shown q3map2 sometimes creates a deluxemap and two
            // blank lightmaps, which must be handled properly as well
            if (endlightmap == 1 && count > 1)
            {
                  c = inpixels[1];
                  for (i = 0;i < size*size;i++)
                  {
                        if (c[bytesperpixel*i + rgbmap[0]])
                              break;
                        if (c[bytesperpixel*i + rgbmap[1]])
                              break;
                        if (c[bytesperpixel*i + rgbmap[2]])
                              break;
                  }
                  if (i == size*size)
                  {
                        // all pixels in the unused lightmap were black...
                        loadmodel->brushq3.deluxemapping = false;
                  }
            }
      }

      Con_DPrintf("%s is %sdeluxemapped\n", loadmodel->name, loadmodel->brushq3.deluxemapping ? "" : "not ");

      // figure out what the most reasonable merge power is within limits

      // find the appropriate NxN dimensions to merge to, to avoid wasted space
      realcount = count >> (int)loadmodel->brushq3.deluxemapping;

      // figure out how big the merged texture has to be
      mergegoal = 128<<bound(0, mod_q3bsp_lightmapmergepower.integer, 6);
      mergegoal = bound(size, mergegoal, (int)vid.maxtexturesize_2d);
      while (mergegoal > size && mergegoal * mergegoal / 4 >= size * size * realcount)
            mergegoal /= 2;
      mergedwidth = mergegoal;
      mergedheight = mergegoal;
      // choose non-square size (2x1 aspect) if only half the space is used;
      // this really only happens when the entire set fits in one texture, if
      // there are multiple textures, we don't worry about shrinking the last
      // one to fit, because the driver prefers the same texture size on
      // consecutive draw calls...
      if (mergedwidth * mergedheight / 2 >= size*size*realcount)
            mergedheight /= 2;

      loadmodel->brushq3.num_lightmapmergedwidthpower = 0;
      loadmodel->brushq3.num_lightmapmergedheightpower = 0;
      while (mergedwidth > size<<loadmodel->brushq3.num_lightmapmergedwidthpower)
            loadmodel->brushq3.num_lightmapmergedwidthpower++;
      while (mergedheight > size<<loadmodel->brushq3.num_lightmapmergedheightpower)
            loadmodel->brushq3.num_lightmapmergedheightpower++;
      loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower = loadmodel->brushq3.num_lightmapmergedwidthpower + loadmodel->brushq3.num_lightmapmergedheightpower + (loadmodel->brushq3.deluxemapping ? 1 : 0);

      powerx = loadmodel->brushq3.num_lightmapmergedwidthpower;
      powery = loadmodel->brushq3.num_lightmapmergedheightpower;
      powerxy = powerx+powery;
      powerdxy = loadmodel->brushq3.deluxemapping + powerxy;

      mergedcolumns = 1 << powerx;
      mergedrows = 1 << powery;
      mergedrowsxcolumns = 1 << powerxy;

      loadmodel->brushq3.num_mergedlightmaps = (realcount + (1 << powerxy) - 1) >> powerxy;
      loadmodel->brushq3.data_lightmaps = (rtexture_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brushq3.num_mergedlightmaps * sizeof(rtexture_t *));
      if (loadmodel->brushq3.deluxemapping)
            loadmodel->brushq3.data_deluxemaps = (rtexture_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brushq3.num_mergedlightmaps * sizeof(rtexture_t *));

      // allocate a texture pool if we need it
      if (loadmodel->texturepool == NULL && cls.state != ca_dedicated)
            loadmodel->texturepool = R_AllocTexturePool();

      mergedpixels = (unsigned char *) Mem_Alloc(tempmempool, mergedwidth * mergedheight * 4);
      mergeddeluxepixels = loadmodel->brushq3.deluxemapping ? (unsigned char *) Mem_Alloc(tempmempool, mergedwidth * mergedheight * 4) : NULL;
      for (i = 0;i < count;i++)
      {
            // figure out which merged lightmap texture this fits into
            realindex = i >> (int)loadmodel->brushq3.deluxemapping;
            lightmapindex = i >> powerdxy;

            // choose the destination address
            mergebuf = (loadmodel->brushq3.deluxemapping && (i & 1)) ? mergeddeluxepixels : mergedpixels;
            mergebuf += 4 * (realindex & (mergedcolumns-1))*size + 4 * ((realindex >> powerx) & (mergedrows-1))*mergedwidth*size;
            if ((i & 1) == 0 || !loadmodel->brushq3.deluxemapping)
                  Con_Printf("copying original lightmap %i (%ix%i) to %i (at %i,%i)\n", i, size, size, lightmapindex, (realindex & (mergedcolumns-1))*size, ((realindex >> powerx) & (mergedrows-1))*size);

            // convert pixels from RGB or BGRA while copying them into the destination rectangle
            for (j = 0;j < size;j++)
            for (k = 0;k < size;k++)
            {
                  mergebuf[(j*mergedwidth+k)*4+0] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[0]];
                  mergebuf[(j*mergedwidth+k)*4+1] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[1]];
                  mergebuf[(j*mergedwidth+k)*4+2] = inpixels[i][(j*size+k)*bytesperpixel+rgbmap[2]];
                  mergebuf[(j*mergedwidth+k)*4+3] = 255;
            }

            // upload texture if this was the last tile being written to the texture
            if (((realindex + 1) & (mergedrowsxcolumns - 1)) == 0 || (realindex + 1) == realcount)
            {
                  if (loadmodel->brushq3.deluxemapping && (i & 1))
                        loadmodel->brushq3.data_deluxemaps[lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va("deluxemap%04i", lightmapindex), mergedwidth, mergedheight, mergeddeluxepixels, TEXTYPE_BGRA, TEXF_FORCELINEAR | (gl_texturecompression_q3bspdeluxemaps.integer ? TEXF_COMPRESS : 0), -1, NULL);
                  else
                        loadmodel->brushq3.data_lightmaps [lightmapindex] = R_LoadTexture2D(loadmodel->texturepool, va("lightmap%04i", lightmapindex), mergedwidth, mergedheight, mergedpixels, TEXTYPE_BGRA, TEXF_FORCELINEAR | (gl_texturecompression_q3bsplightmaps.integer ? TEXF_COMPRESS : 0), -1, NULL);
            }
      }

      if (mergeddeluxepixels)
            Mem_Free(mergeddeluxepixels);
      Mem_Free(mergedpixels);
      if(external)
      {
            for(i = 0; i < count; ++i)
                  Mem_Free(inpixels[i]);
      }
}

static void Mod_Q3BSP_BuildBBoxes(const int *element3i, int num_triangles, const float *vertex3f, float **collisionbbox6f, int *collisionstride, int stride)
{
      int j, k, cnt, tri;
      float *mins, *maxs;
      const float *vert;
      *collisionstride = stride;
      if(stride > 0)
      {
            cnt = (num_triangles + stride - 1) / stride;
            *collisionbbox6f = (float *) Mem_Alloc(loadmodel->mempool, sizeof(float[6]) * cnt);
            for(j = 0; j < cnt; ++j)
            {
                  mins = &((*collisionbbox6f)[6 * j + 0]);
                  maxs = &((*collisionbbox6f)[6 * j + 3]);
                  for(k = 0; k < stride; ++k)
                  {
                        tri = j * stride + k;
                        if(tri >= num_triangles)
                              break;
                        vert = &(vertex3f[element3i[3 * tri + 0] * 3]);
                        if(!k || vert[0] < mins[0]) mins[0] = vert[0];
                        if(!k || vert[1] < mins[1]) mins[1] = vert[1];
                        if(!k || vert[2] < mins[2]) mins[2] = vert[2];
                        if(!k || vert[0] > maxs[0]) maxs[0] = vert[0];
                        if(!k || vert[1] > maxs[1]) maxs[1] = vert[1];
                        if(!k || vert[2] > maxs[2]) maxs[2] = vert[2];
                        vert = &(vertex3f[element3i[3 * tri + 1] * 3]);
                        if(vert[0] < mins[0]) mins[0] = vert[0];
                        if(vert[1] < mins[1]) mins[1] = vert[1];
                        if(vert[2] < mins[2]) mins[2] = vert[2];
                        if(vert[0] > maxs[0]) maxs[0] = vert[0];
                        if(vert[1] > maxs[1]) maxs[1] = vert[1];
                        if(vert[2] > maxs[2]) maxs[2] = vert[2];
                        vert = &(vertex3f[element3i[3 * tri + 2] * 3]);
                        if(vert[0] < mins[0]) mins[0] = vert[0];
                        if(vert[1] < mins[1]) mins[1] = vert[1];
                        if(vert[2] < mins[2]) mins[2] = vert[2];
                        if(vert[0] > maxs[0]) maxs[0] = vert[0];
                        if(vert[1] > maxs[1]) maxs[1] = vert[1];
                        if(vert[2] > maxs[2]) maxs[2] = vert[2];
                  }
            }
      }
      else
            *collisionbbox6f = NULL;
}

05062 typedef struct patchtess_s
{
      patchinfo_t info;

      // Auxiliary data used only by patch loading code in Mod_Q3BSP_LoadFaces
      int surface_id;
      float lodgroup[6];
      float *originalvertex3f;
} patchtess_t;

#define PATCHTESS_SAME_LODGROUP(a,b) \
      ( \
            (a).lodgroup[0] == (b).lodgroup[0] && \
            (a).lodgroup[1] == (b).lodgroup[1] && \
            (a).lodgroup[2] == (b).lodgroup[2] && \
            (a).lodgroup[3] == (b).lodgroup[3] && \
            (a).lodgroup[4] == (b).lodgroup[4] && \
            (a).lodgroup[5] == (b).lodgroup[5] \
      )

static void Mod_Q3BSP_LoadFaces(lump_t *l)
{
      q3dface_t *in, *oldin;
      msurface_t *out, *oldout;
      int i, oldi, j, n, count, invalidelements, patchsize[2], finalwidth, finalheight, xtess, ytess, finalvertices, finaltriangles, firstvertex, firstelement, type, oldnumtriangles, oldnumtriangles2, meshvertices, meshtriangles, collisionvertices, collisiontriangles, numvertices, numtriangles, cxtess, cytess;
      float lightmaptcbase[2], lightmaptcscale[2];
      //int *originalelement3i;
      //int *originalneighbor3i;
      float *originalvertex3f;
      //float *originalsvector3f;
      //float *originaltvector3f;
      float *originalnormal3f;
      float *originalcolor4f;
      float *originaltexcoordtexture2f;
      float *originaltexcoordlightmap2f;
      float *surfacecollisionvertex3f;
      int *surfacecollisionelement3i;
      float *v;
      patchtess_t *patchtess = NULL;
      int patchtesscount = 0;
      qboolean again;

      in = (q3dface_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadFaces: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (msurface_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->data_surfaces = out;
      loadmodel->num_surfaces = count;

      if(count > 0)
            patchtess = (patchtess_t*) Mem_Alloc(tempmempool, count * sizeof(*patchtess));

      i = 0;
      oldi = i;
      oldin = in;
      oldout = out;
      meshvertices = 0;
      meshtriangles = 0;
      for (;i < count;i++, in++, out++)
      {
            // check face type first
            type = LittleLong(in->type);
            if (type != Q3FACETYPE_FLAT
             && type != Q3FACETYPE_PATCH
             && type != Q3FACETYPE_MESH
             && type != Q3FACETYPE_FLARE)
            {
                  Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i: unknown face type %i\n", i, type);
                  continue;
            }

            n = LittleLong(in->textureindex);
            if (n < 0 || n >= loadmodel->num_textures)
            {
                  Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i: invalid textureindex %i (%i textures)\n", i, n, loadmodel->num_textures);
                  continue;
            }
            out->texture = loadmodel->data_textures + n;
            n = LittleLong(in->effectindex);
            if (n < -1 || n >= loadmodel->brushq3.num_effects)
            {
                  if (developer_extra.integer)
                        Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid effectindex %i (%i effects)\n", i, out->texture->name, n, loadmodel->brushq3.num_effects);
                  n = -1;
            }
            if (n == -1)
                  out->effect = NULL;
            else
                  out->effect = loadmodel->brushq3.data_effects + n;

            if (cls.state != ca_dedicated)
            {
                  out->lightmaptexture = NULL;
                  out->deluxemaptexture = r_texture_blanknormalmap;
                  n = LittleLong(in->lightmapindex);
                  if (n < 0)
                        n = -1;
                  else if (n >= loadmodel->brushq3.num_originallightmaps)
                  {
                        if(loadmodel->brushq3.num_originallightmaps != 0)
                              Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid lightmapindex %i (%i lightmaps)\n", i, out->texture->name, n, loadmodel->brushq3.num_originallightmaps);
                        n = -1;
                  }
                  else
                  {
                        out->lightmaptexture = loadmodel->brushq3.data_lightmaps[n >> loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower];
                        if (loadmodel->brushq3.deluxemapping)
                              out->deluxemaptexture = loadmodel->brushq3.data_deluxemaps[n >> loadmodel->brushq3.num_lightmapmergedwidthheightdeluxepower];
                        loadmodel->lit = true;
                  }
            }

            firstvertex = LittleLong(in->firstvertex);
            numvertices = LittleLong(in->numvertices);
            firstelement = LittleLong(in->firstelement);
            numtriangles = LittleLong(in->numelements) / 3;
            if (numtriangles * 3 != LittleLong(in->numelements))
            {
                  Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): numelements %i is not a multiple of 3\n", i, out->texture->name, LittleLong(in->numelements));
                  continue;
            }
            if (firstvertex < 0 || firstvertex + numvertices > loadmodel->brushq3.num_vertices)
            {
                  Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid vertex range %i : %i (%i vertices)\n", i, out->texture->name, firstvertex, firstvertex + numvertices, loadmodel->brushq3.num_vertices);
                  continue;
            }
            if (firstelement < 0 || firstelement + numtriangles * 3 > loadmodel->brushq3.num_triangles * 3)
            {
                  Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid element range %i : %i (%i elements)\n", i, out->texture->name, firstelement, firstelement + numtriangles * 3, loadmodel->brushq3.num_triangles * 3);
                  continue;
            }
            switch(type)
            {
            case Q3FACETYPE_FLAT:
            case Q3FACETYPE_MESH:
                  // no processing necessary
                  break;
            case Q3FACETYPE_PATCH:
                  patchsize[0] = LittleLong(in->specific.patch.patchsize[0]);
                  patchsize[1] = LittleLong(in->specific.patch.patchsize[1]);
                  if (numvertices != (patchsize[0] * patchsize[1]) || patchsize[0] < 3 || patchsize[1] < 3 || !(patchsize[0] & 1) || !(patchsize[1] & 1) || patchsize[0] * patchsize[1] >= min(r_subdivisions_maxvertices.integer, r_subdivisions_collision_maxvertices.integer))
                  {
                        Con_Printf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): invalid patchsize %ix%i\n", i, out->texture->name, patchsize[0], patchsize[1]);
                        continue;
                  }
                  originalvertex3f = loadmodel->brushq3.data_vertex3f + firstvertex * 3;

                  // convert patch to Q3FACETYPE_MESH
                  xtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value);
                  ytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_tolerance.value);
                  // bound to user settings
                  xtess = bound(r_subdivisions_mintess.integer, xtess, r_subdivisions_maxtess.integer);
                  ytess = bound(r_subdivisions_mintess.integer, ytess, r_subdivisions_maxtess.integer);
                  // bound to sanity settings
                  xtess = bound(0, xtess, 1024);
                  ytess = bound(0, ytess, 1024);

                  // lower quality collision patches! Same procedure as before, but different cvars
                  // convert patch to Q3FACETYPE_MESH
                  cxtess = Q3PatchTesselationOnX(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value);
                  cytess = Q3PatchTesselationOnY(patchsize[0], patchsize[1], 3, originalvertex3f, r_subdivisions_collision_tolerance.value);
                  // bound to user settings
                  cxtess = bound(r_subdivisions_collision_mintess.integer, cxtess, r_subdivisions_collision_maxtess.integer);
                  cytess = bound(r_subdivisions_collision_mintess.integer, cytess, r_subdivisions_collision_maxtess.integer);
                  // bound to sanity settings
                  cxtess = bound(0, cxtess, 1024);
                  cytess = bound(0, cytess, 1024);

                  // store it for the LOD grouping step
                  patchtess[patchtesscount].info.xsize = patchsize[0];
                  patchtess[patchtesscount].info.ysize = patchsize[1];
                  patchtess[patchtesscount].info.lods[PATCH_LOD_VISUAL].xtess = xtess;
                  patchtess[patchtesscount].info.lods[PATCH_LOD_VISUAL].ytess = ytess;
                  patchtess[patchtesscount].info.lods[PATCH_LOD_COLLISION].xtess = cxtess;
                  patchtess[patchtesscount].info.lods[PATCH_LOD_COLLISION].ytess = cytess;
      
                  patchtess[patchtesscount].surface_id = i;
                  patchtess[patchtesscount].lodgroup[0] = LittleFloat(in->specific.patch.mins[0]);
                  patchtess[patchtesscount].lodgroup[1] = LittleFloat(in->specific.patch.mins[1]);
                  patchtess[patchtesscount].lodgroup[2] = LittleFloat(in->specific.patch.mins[2]);
                  patchtess[patchtesscount].lodgroup[3] = LittleFloat(in->specific.patch.maxs[0]);
                  patchtess[patchtesscount].lodgroup[4] = LittleFloat(in->specific.patch.maxs[1]);
                  patchtess[patchtesscount].lodgroup[5] = LittleFloat(in->specific.patch.maxs[2]);
                  patchtess[patchtesscount].originalvertex3f = originalvertex3f;
                  ++patchtesscount;
                  break;
            case Q3FACETYPE_FLARE:
                  if (developer_extra.integer)
                        Con_DPrintf("Mod_Q3BSP_LoadFaces: face #%i (texture \"%s\"): Q3FACETYPE_FLARE not supported (yet)\n", i, out->texture->name);
                  // don't render it
                  continue;
            }
            out->num_vertices = numvertices;
            out->num_triangles = numtriangles;
            meshvertices += out->num_vertices;
            meshtriangles += out->num_triangles;
      }

      // Fix patches tesselations so that they make no seams
      do
      {
            again = false;
            for(i = 0; i < patchtesscount; ++i)
            {
                  for(j = i+1; j < patchtesscount; ++j)
                  {
                        if (!PATCHTESS_SAME_LODGROUP(patchtess[i], patchtess[j]))
                              continue;

                        if (Q3PatchAdjustTesselation(3, &patchtess[i].info, patchtess[i].originalvertex3f, &patchtess[j].info, patchtess[j].originalvertex3f) )
                              again = true;
                  }
            }
      }
      while (again);

      // Calculate resulting number of triangles
      collisionvertices = 0;
      collisiontriangles = 0;
      for(i = 0; i < patchtesscount; ++i)
      {
            finalwidth = Q3PatchDimForTess(patchtess[i].info.xsize, patchtess[i].info.lods[PATCH_LOD_VISUAL].xtess);
            finalheight = Q3PatchDimForTess(patchtess[i].info.ysize,patchtess[i].info.lods[PATCH_LOD_VISUAL].ytess);
            numvertices = finalwidth * finalheight;
            numtriangles = (finalwidth - 1) * (finalheight - 1) * 2;

            oldout[patchtess[i].surface_id].num_vertices = numvertices;
            oldout[patchtess[i].surface_id].num_triangles = numtriangles;
            meshvertices += oldout[patchtess[i].surface_id].num_vertices;
            meshtriangles += oldout[patchtess[i].surface_id].num_triangles;

            finalwidth = Q3PatchDimForTess(patchtess[i].info.xsize, patchtess[i].info.lods[PATCH_LOD_COLLISION].xtess);
            finalheight = Q3PatchDimForTess(patchtess[i].info.ysize,patchtess[i].info.lods[PATCH_LOD_COLLISION].ytess);
            numvertices = finalwidth * finalheight;
            numtriangles = (finalwidth - 1) * (finalheight - 1) * 2;

            oldout[patchtess[i].surface_id].num_collisionvertices = numvertices;
            oldout[patchtess[i].surface_id].num_collisiontriangles = numtriangles;
            collisionvertices += oldout[patchtess[i].surface_id].num_collisionvertices;
            collisiontriangles += oldout[patchtess[i].surface_id].num_collisiontriangles;
      }

      i = oldi;
      in = oldin;
      out = oldout;
      Mod_AllocSurfMesh(loadmodel->mempool, meshvertices, meshtriangles, false, true, false);
      if (collisiontriangles)
      {
            loadmodel->brush.data_collisionvertex3f = (float *)Mem_Alloc(loadmodel->mempool, collisionvertices * sizeof(float[3]));
            loadmodel->brush.data_collisionelement3i = (int *)Mem_Alloc(loadmodel->mempool, collisiontriangles * sizeof(int[3]));
      }
      meshvertices = 0;
      meshtriangles = 0;
      collisionvertices = 0;
      collisiontriangles = 0;
      for (;i < count && meshvertices + out->num_vertices <= loadmodel->surfmesh.num_vertices;i++, in++, out++)
      {
            if (out->num_vertices < 3 || out->num_triangles < 1)
                  continue;

            type = LittleLong(in->type);
            firstvertex = LittleLong(in->firstvertex);
            firstelement = LittleLong(in->firstelement);
            out->num_firstvertex = meshvertices;
            out->num_firsttriangle = meshtriangles;
            out->num_firstcollisiontriangle = collisiontriangles;
            switch(type)
            {
            case Q3FACETYPE_FLAT:
            case Q3FACETYPE_MESH:
                  // no processing necessary, except for lightmap merging
                  for (j = 0;j < out->num_vertices;j++)
                  {
                        (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 0] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 0];
                        (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 1] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 1];
                        (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[j * 3 + 2] = loadmodel->brushq3.data_vertex3f[(firstvertex + j) * 3 + 2];
                        (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 0] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 0];
                        (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 1] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 1];
                        (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex)[j * 3 + 2] = loadmodel->brushq3.data_normal3f[(firstvertex + j) * 3 + 2];
                        (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex)[j * 2 + 0] = loadmodel->brushq3.data_texcoordtexture2f[(firstvertex + j) * 2 + 0];
                        (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex)[j * 2 + 1] = loadmodel->brushq3.data_texcoordtexture2f[(firstvertex + j) * 2 + 1];
                        (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex)[j * 2 + 0] = loadmodel->brushq3.data_texcoordlightmap2f[(firstvertex + j) * 2 + 0];
                        (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex)[j * 2 + 1] = loadmodel->brushq3.data_texcoordlightmap2f[(firstvertex + j) * 2 + 1];
                        (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 0] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 0];
                        (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 1] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 1];
                        (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 2] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 2];
                        (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex)[j * 4 + 3] = loadmodel->brushq3.data_color4f[(firstvertex + j) * 4 + 3];
                  }
                  for (j = 0;j < out->num_triangles*3;j++)
                        (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] = loadmodel->brushq3.data_element3i[firstelement + j] + out->num_firstvertex;
                  break;
            case Q3FACETYPE_PATCH:
                  patchsize[0] = LittleLong(in->specific.patch.patchsize[0]);
                  patchsize[1] = LittleLong(in->specific.patch.patchsize[1]);
                  originalvertex3f = loadmodel->brushq3.data_vertex3f + firstvertex * 3;
                  originalnormal3f = loadmodel->brushq3.data_normal3f + firstvertex * 3;
                  originaltexcoordtexture2f = loadmodel->brushq3.data_texcoordtexture2f + firstvertex * 2;
                  originaltexcoordlightmap2f = loadmodel->brushq3.data_texcoordlightmap2f + firstvertex * 2;
                  originalcolor4f = loadmodel->brushq3.data_color4f + firstvertex * 4;

                  xtess = ytess = cxtess = cytess = -1;
                  for(j = 0; j < patchtesscount; ++j)
                        if(patchtess[j].surface_id == i)
                        {
                              xtess = patchtess[j].info.lods[PATCH_LOD_VISUAL].xtess;
                              ytess = patchtess[j].info.lods[PATCH_LOD_VISUAL].ytess;
                              cxtess = patchtess[j].info.lods[PATCH_LOD_COLLISION].xtess;
                              cytess = patchtess[j].info.lods[PATCH_LOD_COLLISION].ytess;
                              break;
                        }
                  if(xtess == -1)
                  {
                        Con_Printf("ERROR: patch %d isn't preprocessed?!?\n", i);
                        xtess = ytess = cxtess = cytess = 0;
                  }

                  finalwidth = Q3PatchDimForTess(patchsize[0],xtess); //((patchsize[0] - 1) * xtess) + 1;
                  finalheight = Q3PatchDimForTess(patchsize[1],ytess); //((patchsize[1] - 1) * ytess) + 1;
                  finalvertices = finalwidth * finalheight;
                  oldnumtriangles = finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2;
                  type = Q3FACETYPE_MESH;
                  // generate geometry
                  // (note: normals are skipped because they get recalculated)
                  Q3PatchTesselateFloat(3, sizeof(float[3]), (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, xtess, ytess);
                  Q3PatchTesselateFloat(3, sizeof(float[3]), (loadmodel->surfmesh.data_normal3f + 3 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[3]), originalnormal3f, xtess, ytess);
                  Q3PatchTesselateFloat(2, sizeof(float[2]), (loadmodel->surfmesh.data_texcoordtexture2f + 2 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordtexture2f, xtess, ytess);
                  Q3PatchTesselateFloat(2, sizeof(float[2]), (loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[2]), originaltexcoordlightmap2f, xtess, ytess);
                  Q3PatchTesselateFloat(4, sizeof(float[4]), (loadmodel->surfmesh.data_lightmapcolor4f + 4 * out->num_firstvertex), patchsize[0], patchsize[1], sizeof(float[4]), originalcolor4f, xtess, ytess);
                  Q3PatchTriangleElements((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), finalwidth, finalheight, out->num_firstvertex);

                  out->num_triangles = Mod_RemoveDegenerateTriangles(out->num_triangles, (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle), loadmodel->surfmesh.data_vertex3f);

                  if (developer_extra.integer)
                  {
                        if (out->num_triangles < finaltriangles)
                              Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles, %i degenerate triangles removed (leaving %i)\n", patchsize[0], patchsize[1], out->num_vertices, finaltriangles, finaltriangles - out->num_triangles, out->num_triangles);
                        else
                              Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve subdivided to %i vertices / %i triangles\n", patchsize[0], patchsize[1], out->num_vertices, out->num_triangles);
                  }
                  // q3map does not put in collision brushes for curves... ugh
                  // build the lower quality collision geometry
                  finalwidth = Q3PatchDimForTess(patchsize[0],cxtess); //((patchsize[0] - 1) * cxtess) + 1;
                  finalheight = Q3PatchDimForTess(patchsize[1],cytess); //((patchsize[1] - 1) * cytess) + 1;
                  finalvertices = finalwidth * finalheight;
                  oldnumtriangles2 = finaltriangles = (finalwidth - 1) * (finalheight - 1) * 2;

                  // legacy collision geometry implementation
                  out->deprecatedq3data_collisionvertex3f = (float *)Mem_Alloc(loadmodel->mempool, sizeof(float[3]) * finalvertices);
                  out->deprecatedq3data_collisionelement3i = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int[3]) * finaltriangles);
                  out->num_collisionvertices = finalvertices;
                  out->num_collisiontriangles = finaltriangles;
                  Q3PatchTesselateFloat(3, sizeof(float[3]), out->deprecatedq3data_collisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, cxtess, cytess);
                  Q3PatchTriangleElements(out->deprecatedq3data_collisionelement3i, finalwidth, finalheight, 0);

                  //Mod_SnapVertices(3, out->num_vertices, (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), 0.25);
                  Mod_SnapVertices(3, finalvertices, out->deprecatedq3data_collisionvertex3f, 1);

                  out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(finaltriangles, out->deprecatedq3data_collisionelement3i, out->deprecatedq3data_collisionelement3i, out->deprecatedq3data_collisionvertex3f);

                  // now optimize the collision mesh by finding triangle bboxes...
                  Mod_Q3BSP_BuildBBoxes(out->deprecatedq3data_collisionelement3i, out->num_collisiontriangles, out->deprecatedq3data_collisionvertex3f, &out->deprecatedq3data_collisionbbox6f, &out->deprecatedq3num_collisionbboxstride, mod_q3bsp_curves_collisions_stride.integer);
                  Mod_Q3BSP_BuildBBoxes(loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle, out->num_triangles, loadmodel->surfmesh.data_vertex3f, &out->deprecatedq3data_bbox6f, &out->deprecatedq3num_bboxstride, mod_q3bsp_curves_stride.integer);

                  // store collision geometry for BIH collision tree
                  surfacecollisionvertex3f = loadmodel->brush.data_collisionvertex3f + collisionvertices * 3;
                  surfacecollisionelement3i = loadmodel->brush.data_collisionelement3i + collisiontriangles * 3;
                  Q3PatchTesselateFloat(3, sizeof(float[3]), surfacecollisionvertex3f, patchsize[0], patchsize[1], sizeof(float[3]), originalvertex3f, cxtess, cytess);
                  Q3PatchTriangleElements(surfacecollisionelement3i, finalwidth, finalheight, collisionvertices);
                  Mod_SnapVertices(3, finalvertices, surfacecollisionvertex3f, 1);
#if 1
                  // remove this once the legacy code is removed
                  {
                        int nc = out->num_collisiontriangles;
#endif
                  out->num_collisiontriangles = Mod_RemoveDegenerateTriangles(finaltriangles, surfacecollisionelement3i, surfacecollisionelement3i, loadmodel->brush.data_collisionvertex3f);
#if 1
                        if(nc != out->num_collisiontriangles)
                        {
                              Con_Printf("number of collision triangles differs between BIH and BSP. FAIL.\n");
                        }
                  }
#endif

                  if (developer_extra.integer)
                        Con_DPrintf("Mod_Q3BSP_LoadFaces: %ix%i curve became %i:%i vertices / %i:%i triangles (%i:%i degenerate)\n", patchsize[0], patchsize[1], out->num_vertices, out->num_collisionvertices, oldnumtriangles, oldnumtriangles2, oldnumtriangles - out->num_triangles, oldnumtriangles2 - out->num_collisiontriangles);

                  collisionvertices += finalvertices;
                  collisiontriangles += out->num_collisiontriangles;
                  break;
            default:
                  break;
            }
            meshvertices += out->num_vertices;
            meshtriangles += out->num_triangles;
            for (j = 0, invalidelements = 0;j < out->num_triangles * 3;j++)
                  if ((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] < out->num_firstvertex || (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] >= out->num_firstvertex + out->num_vertices)
                        invalidelements++;
            if (invalidelements)
            {
                  Con_Printf("Mod_Q3BSP_LoadFaces: Warning: face #%i has %i invalid elements, type = %i, texture->name = \"%s\", texture->surfaceflags = %i, firstvertex = %i, numvertices = %i, firstelement = %i, numelements = %i, elements list:\n", i, invalidelements, type, out->texture->name, out->texture->surfaceflags, firstvertex, out->num_vertices, firstelement, out->num_triangles * 3);
                  for (j = 0;j < out->num_triangles * 3;j++)
                  {
                        Con_Printf(" %i", (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] - out->num_firstvertex);
                        if ((loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] < out->num_firstvertex || (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] >= out->num_firstvertex + out->num_vertices)
                              (loadmodel->surfmesh.data_element3i + 3 * out->num_firsttriangle)[j] = out->num_firstvertex;
                  }
                  Con_Print("\n");
            }
            // calculate a bounding box
            VectorClear(out->mins);
            VectorClear(out->maxs);
            if (out->num_vertices)
            {
                  if (cls.state != ca_dedicated && out->lightmaptexture)
                  {
                        // figure out which part of the merged lightmap this fits into
                        int lightmapindex = LittleLong(in->lightmapindex) >> (loadmodel->brushq3.deluxemapping ? 1 : 0);
                        int mergewidth = R_TextureWidth(out->lightmaptexture) / loadmodel->brushq3.lightmapsize;
                        int mergeheight = R_TextureHeight(out->lightmaptexture) / loadmodel->brushq3.lightmapsize;
                        lightmapindex &= mergewidth * mergeheight - 1;
                        lightmaptcscale[0] = 1.0f / mergewidth;
                        lightmaptcscale[1] = 1.0f / mergeheight;
                        lightmaptcbase[0] = (lightmapindex % mergewidth) * lightmaptcscale[0];
                        lightmaptcbase[1] = (lightmapindex / mergewidth) * lightmaptcscale[1];
                        // modify the lightmap texcoords to match this region of the merged lightmap
                        for (j = 0, v = loadmodel->surfmesh.data_texcoordlightmap2f + 2 * out->num_firstvertex;j < out->num_vertices;j++, v += 2)
                        {
                              v[0] = v[0] * lightmaptcscale[0] + lightmaptcbase[0];
                              v[1] = v[1] * lightmaptcscale[1] + lightmaptcbase[1];
                        }
                  }
                  VectorCopy((loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), out->mins);
                  VectorCopy((loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex), out->maxs);
                  for (j = 1, v = (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex) + 3;j < out->num_vertices;j++, v += 3)
                  {
                        out->mins[0] = min(out->mins[0], v[0]);
                        out->maxs[0] = max(out->maxs[0], v[0]);
                        out->mins[1] = min(out->mins[1], v[1]);
                        out->maxs[1] = max(out->maxs[1], v[1]);
                        out->mins[2] = min(out->mins[2], v[2]);
                        out->maxs[2] = max(out->maxs[2], v[2]);
                  }
                  out->mins[0] -= 1.0f;
                  out->mins[1] -= 1.0f;
                  out->mins[2] -= 1.0f;
                  out->maxs[0] += 1.0f;
                  out->maxs[1] += 1.0f;
                  out->maxs[2] += 1.0f;
            }
            // set lightmap styles for consistency with q1bsp
            //out->lightmapinfo->styles[0] = 0;
            //out->lightmapinfo->styles[1] = 255;
            //out->lightmapinfo->styles[2] = 255;
            //out->lightmapinfo->styles[3] = 255;
      }

      i = oldi;
      out = oldout;
      for (;i < count;i++, out++)
      {
            if(out->num_vertices && out->num_triangles)
                  continue;
            if(out->num_vertices == 0)
            {
                  Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s) has no vertices, ignoring\n", i, out->texture ? out->texture->name : "(none)");
                  if(out->num_triangles == 0)
                        Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s) has no triangles, ignoring\n", i, out->texture ? out->texture->name : "(none)");
            }
            else if(out->num_triangles == 0)
                  Con_Printf("Mod_Q3BSP_LoadFaces: surface %d (texture %s, near %f %f %f) has no triangles, ignoring\n", i, out->texture ? out->texture->name : "(none)",
                              (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[0 * 3 + 0],
                              (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[1 * 3 + 0],
                              (loadmodel->surfmesh.data_vertex3f + 3 * out->num_firstvertex)[2 * 3 + 0]);
      }

      // for per pixel lighting
      Mod_BuildTextureVectorsFromNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0);

      // generate ushort elements array if possible
      if (loadmodel->surfmesh.data_element3s)
            for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
                  loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];

      // free the no longer needed vertex data
      loadmodel->brushq3.num_vertices = 0;
      if (loadmodel->brushq3.data_vertex3f)
            Mem_Free(loadmodel->brushq3.data_vertex3f);
      loadmodel->brushq3.data_vertex3f = NULL;
      loadmodel->brushq3.data_normal3f = NULL;
      loadmodel->brushq3.data_texcoordtexture2f = NULL;
      loadmodel->brushq3.data_texcoordlightmap2f = NULL;
      loadmodel->brushq3.data_color4f = NULL;
      // free the no longer needed triangle data
      loadmodel->brushq3.num_triangles = 0;
      if (loadmodel->brushq3.data_element3i)
            Mem_Free(loadmodel->brushq3.data_element3i);
      loadmodel->brushq3.data_element3i = NULL;

      if(patchtess)
            Mem_Free(patchtess);
}

static void Mod_Q3BSP_LoadModels(lump_t *l)
{
      q3dmodel_t *in;
      q3dmodel_t *out;
      int i, j, n, c, count;

      in = (q3dmodel_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadModels: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (q3dmodel_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brushq3.data_models = out;
      loadmodel->brushq3.num_models = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            for (j = 0;j < 3;j++)
            {
                  out->mins[j] = LittleFloat(in->mins[j]);
                  out->maxs[j] = LittleFloat(in->maxs[j]);
            }
            n = LittleLong(in->firstface);
            c = LittleLong(in->numfaces);
            if (n < 0 || n + c > loadmodel->num_surfaces)
                  Host_Error("Mod_Q3BSP_LoadModels: invalid face range %i : %i (%i faces)", n, n + c, loadmodel->num_surfaces);
            out->firstface = n;
            out->numfaces = c;
            n = LittleLong(in->firstbrush);
            c = LittleLong(in->numbrushes);
            if (n < 0 || n + c > loadmodel->brush.num_brushes)
                  Host_Error("Mod_Q3BSP_LoadModels: invalid brush range %i : %i (%i brushes)", n, n + c, loadmodel->brush.num_brushes);
            out->firstbrush = n;
            out->numbrushes = c;
      }
}

static void Mod_Q3BSP_LoadLeafBrushes(lump_t *l)
{
      int *in;
      int *out;
      int i, n, count;

      in = (int *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadLeafBrushes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_leafbrushes = out;
      loadmodel->brush.num_leafbrushes = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            n = LittleLong(*in);
            if (n < 0 || n >= loadmodel->brush.num_brushes)
                  Host_Error("Mod_Q3BSP_LoadLeafBrushes: invalid brush index %i (%i brushes)", n, loadmodel->brush.num_brushes);
            *out = n;
      }
}

static void Mod_Q3BSP_LoadLeafFaces(lump_t *l)
{
      int *in;
      int *out;
      int i, n, count;

      in = (int *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadLeafFaces: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (int *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_leafsurfaces = out;
      loadmodel->brush.num_leafsurfaces = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            n = LittleLong(*in);
            if (n < 0 || n >= loadmodel->num_surfaces)
                  Host_Error("Mod_Q3BSP_LoadLeafFaces: invalid face index %i (%i faces)", n, loadmodel->num_surfaces);
            *out = n;
      }
}

static void Mod_Q3BSP_LoadLeafs(lump_t *l)
{
      q3dleaf_t *in;
      mleaf_t *out;
      int i, j, n, c, count;

      in = (q3dleaf_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadLeafs: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      out = (mleaf_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_leafs = out;
      loadmodel->brush.num_leafs = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            out->parent = NULL;
            out->plane = NULL;
            out->clusterindex = LittleLong(in->clusterindex);
            out->areaindex = LittleLong(in->areaindex);
            for (j = 0;j < 3;j++)
            {
                  // yes the mins/maxs are ints
                  out->mins[j] = LittleLong(in->mins[j]) - 1;
                  out->maxs[j] = LittleLong(in->maxs[j]) + 1;
            }
            n = LittleLong(in->firstleafface);
            c = LittleLong(in->numleaffaces);
            if (n < 0 || n + c > loadmodel->brush.num_leafsurfaces)
                  Host_Error("Mod_Q3BSP_LoadLeafs: invalid leafsurface range %i : %i (%i leafsurfaces)", n, n + c, loadmodel->brush.num_leafsurfaces);
            out->firstleafsurface = loadmodel->brush.data_leafsurfaces + n;
            out->numleafsurfaces = c;
            n = LittleLong(in->firstleafbrush);
            c = LittleLong(in->numleafbrushes);
            if (n < 0 || n + c > loadmodel->brush.num_leafbrushes)
                  Host_Error("Mod_Q3BSP_LoadLeafs: invalid leafbrush range %i : %i (%i leafbrushes)", n, n + c, loadmodel->brush.num_leafbrushes);
            out->firstleafbrush = loadmodel->brush.data_leafbrushes + n;
            out->numleafbrushes = c;
      }
}

static void Mod_Q3BSP_LoadNodes(lump_t *l)
{
      q3dnode_t *in;
      mnode_t *out;
      int i, j, n, count;

      in = (q3dnode_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadNodes: funny lump size in %s",loadmodel->name);
      count = l->filelen / sizeof(*in);
      if (count == 0)
            Host_Error("Mod_Q3BSP_LoadNodes: missing BSP tree in %s",loadmodel->name);
      out = (mnode_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));

      loadmodel->brush.data_nodes = out;
      loadmodel->brush.num_nodes = count;

      for (i = 0;i < count;i++, in++, out++)
      {
            out->parent = NULL;
            n = LittleLong(in->planeindex);
            if (n < 0 || n >= loadmodel->brush.num_planes)
                  Host_Error("Mod_Q3BSP_LoadNodes: invalid planeindex %i (%i planes)", n, loadmodel->brush.num_planes);
            out->plane = loadmodel->brush.data_planes + n;
            for (j = 0;j < 2;j++)
            {
                  n = LittleLong(in->childrenindex[j]);
                  if (n >= 0)
                  {
                        if (n >= loadmodel->brush.num_nodes)
                              Host_Error("Mod_Q3BSP_LoadNodes: invalid child node index %i (%i nodes)", n, loadmodel->brush.num_nodes);
                        out->children[j] = loadmodel->brush.data_nodes + n;
                  }
                  else
                  {
                        n = -1 - n;
                        if (n >= loadmodel->brush.num_leafs)
                              Host_Error("Mod_Q3BSP_LoadNodes: invalid child leaf index %i (%i leafs)", n, loadmodel->brush.num_leafs);
                        out->children[j] = (mnode_t *)(loadmodel->brush.data_leafs + n);
                  }
            }
            for (j = 0;j < 3;j++)
            {
                  // yes the mins/maxs are ints
                  out->mins[j] = LittleLong(in->mins[j]) - 1;
                  out->maxs[j] = LittleLong(in->maxs[j]) + 1;
            }
      }

      // set the parent pointers
      Mod_Q1BSP_LoadNodes_RecursiveSetParent(loadmodel->brush.data_nodes, NULL);
}

static void Mod_Q3BSP_LoadLightGrid(lump_t *l)
{
      q3dlightgrid_t *in;
      q3dlightgrid_t *out;
      int count;

      in = (q3dlightgrid_t *)(mod_base + l->fileofs);
      if (l->filelen % sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadLightGrid: funny lump size in %s",loadmodel->name);
      loadmodel->brushq3.num_lightgrid_scale[0] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[0];
      loadmodel->brushq3.num_lightgrid_scale[1] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[1];
      loadmodel->brushq3.num_lightgrid_scale[2] = 1.0f / loadmodel->brushq3.num_lightgrid_cellsize[2];
      loadmodel->brushq3.num_lightgrid_imins[0] = (int)ceil(loadmodel->brushq3.data_models->mins[0] * loadmodel->brushq3.num_lightgrid_scale[0]);
      loadmodel->brushq3.num_lightgrid_imins[1] = (int)ceil(loadmodel->brushq3.data_models->mins[1] * loadmodel->brushq3.num_lightgrid_scale[1]);
      loadmodel->brushq3.num_lightgrid_imins[2] = (int)ceil(loadmodel->brushq3.data_models->mins[2] * loadmodel->brushq3.num_lightgrid_scale[2]);
      loadmodel->brushq3.num_lightgrid_imaxs[0] = (int)floor(loadmodel->brushq3.data_models->maxs[0] * loadmodel->brushq3.num_lightgrid_scale[0]);
      loadmodel->brushq3.num_lightgrid_imaxs[1] = (int)floor(loadmodel->brushq3.data_models->maxs[1] * loadmodel->brushq3.num_lightgrid_scale[1]);
      loadmodel->brushq3.num_lightgrid_imaxs[2] = (int)floor(loadmodel->brushq3.data_models->maxs[2] * loadmodel->brushq3.num_lightgrid_scale[2]);
      loadmodel->brushq3.num_lightgrid_isize[0] = loadmodel->brushq3.num_lightgrid_imaxs[0] - loadmodel->brushq3.num_lightgrid_imins[0] + 1;
      loadmodel->brushq3.num_lightgrid_isize[1] = loadmodel->brushq3.num_lightgrid_imaxs[1] - loadmodel->brushq3.num_lightgrid_imins[1] + 1;
      loadmodel->brushq3.num_lightgrid_isize[2] = loadmodel->brushq3.num_lightgrid_imaxs[2] - loadmodel->brushq3.num_lightgrid_imins[2] + 1;
      count = loadmodel->brushq3.num_lightgrid_isize[0] * loadmodel->brushq3.num_lightgrid_isize[1] * loadmodel->brushq3.num_lightgrid_isize[2];
      Matrix4x4_CreateScale3(&loadmodel->brushq3.num_lightgrid_indexfromworld, loadmodel->brushq3.num_lightgrid_scale[0], loadmodel->brushq3.num_lightgrid_scale[1], loadmodel->brushq3.num_lightgrid_scale[2]);
      Matrix4x4_ConcatTranslate(&loadmodel->brushq3.num_lightgrid_indexfromworld, -loadmodel->brushq3.num_lightgrid_imins[0] * loadmodel->brushq3.num_lightgrid_cellsize[0], -loadmodel->brushq3.num_lightgrid_imins[1] * loadmodel->brushq3.num_lightgrid_cellsize[1], -loadmodel->brushq3.num_lightgrid_imins[2] * loadmodel->brushq3.num_lightgrid_cellsize[2]);

      // if lump is empty there is nothing to load, we can deal with that in the LightPoint code
      if (l->filelen)
      {
            if (l->filelen < count * (int)sizeof(*in))
            {
                  Con_Printf("Mod_Q3BSP_LoadLightGrid: invalid lightgrid lump size %i bytes, should be %i bytes (%ix%ix%i)", l->filelen, (int)(count * sizeof(*in)), loadmodel->brushq3.num_lightgrid_isize[0], loadmodel->brushq3.num_lightgrid_isize[1], loadmodel->brushq3.num_lightgrid_isize[2]);
                  return; // ignore the grid if we cannot understand it
            }
            if (l->filelen != count * (int)sizeof(*in))
                  Con_Printf("Mod_Q3BSP_LoadLightGrid: Warning: calculated lightgrid size %i bytes does not match lump size %i\n", (int)(count * sizeof(*in)), l->filelen);
            out = (q3dlightgrid_t *)Mem_Alloc(loadmodel->mempool, count * sizeof(*out));
            loadmodel->brushq3.data_lightgrid = out;
            loadmodel->brushq3.num_lightgrid = count;
            // no swapping or validation necessary
            memcpy(out, in, count * (int)sizeof(*out));
      }
}

static void Mod_Q3BSP_LoadPVS(lump_t *l)
{
      q3dpvs_t *in;
      int totalchains;

      if (l->filelen == 0)
      {
            int i;
            // unvised maps often have cluster indices even without pvs, so check
            // leafs to find real number of clusters
            loadmodel->brush.num_pvsclusters = 1;
            for (i = 0;i < loadmodel->brush.num_leafs;i++)
                  loadmodel->brush.num_pvsclusters = max(loadmodel->brush.num_pvsclusters, loadmodel->brush.data_leafs[i].clusterindex + 1);

            // create clusters
            loadmodel->brush.num_pvsclusterbytes = (loadmodel->brush.num_pvsclusters + 7) / 8;
            totalchains = loadmodel->brush.num_pvsclusterbytes * loadmodel->brush.num_pvsclusters;
            loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, totalchains);
            memset(loadmodel->brush.data_pvsclusters, 0xFF, totalchains);
            return;
      }

      in = (q3dpvs_t *)(mod_base + l->fileofs);
      if (l->filelen < 9)
            Host_Error("Mod_Q3BSP_LoadPVS: funny lump size in %s",loadmodel->name);

      loadmodel->brush.num_pvsclusters = LittleLong(in->numclusters);
      loadmodel->brush.num_pvsclusterbytes = LittleLong(in->chainlength);
      if (loadmodel->brush.num_pvsclusterbytes < ((loadmodel->brush.num_pvsclusters + 7) / 8))
            Host_Error("Mod_Q3BSP_LoadPVS: (chainlength = %i) < ((numclusters = %i) + 7) / 8", loadmodel->brush.num_pvsclusterbytes, loadmodel->brush.num_pvsclusters);
      totalchains = loadmodel->brush.num_pvsclusterbytes * loadmodel->brush.num_pvsclusters;
      if (l->filelen < totalchains + (int)sizeof(*in))
            Host_Error("Mod_Q3BSP_LoadPVS: lump too small ((numclusters = %i) * (chainlength = %i) + sizeof(q3dpvs_t) == %i bytes, lump is %i bytes)", loadmodel->brush.num_pvsclusters, loadmodel->brush.num_pvsclusterbytes, (int)(totalchains + sizeof(*in)), l->filelen);

      loadmodel->brush.data_pvsclusters = (unsigned char *)Mem_Alloc(loadmodel->mempool, totalchains);
      memcpy(loadmodel->brush.data_pvsclusters, (unsigned char *)(in + 1), totalchains);
}

static void Mod_Q3BSP_LightPoint(dp_model_t *model, const vec3_t p, vec3_t ambientcolor, vec3_t diffusecolor, vec3_t diffusenormal)
{
      int i, j, k, index[3];
      float transformed[3], blend1, blend2, blend, stylescale = 1;
      q3dlightgrid_t *a, *s;

      // scale lighting by lightstyle[0] so that darkmode in dpmod works properly
      switch(vid.renderpath)
      {
      case RENDERPATH_GL20:
      case RENDERPATH_D3D9:
      case RENDERPATH_D3D10:
      case RENDERPATH_D3D11:
      case RENDERPATH_SOFT:
      case RENDERPATH_GLES2:
            // LordHavoc: FIXME: is this true?
            stylescale = 1; // added while render
            break;
      case RENDERPATH_GL11:
      case RENDERPATH_GL13:
      case RENDERPATH_GLES1:
            stylescale = r_refdef.scene.rtlightstylevalue[0];
            break;
      }

      if (!model->brushq3.num_lightgrid)
      {
            ambientcolor[0] = stylescale;
            ambientcolor[1] = stylescale;
            ambientcolor[2] = stylescale;
            return;
      }

      Matrix4x4_Transform(&model->brushq3.num_lightgrid_indexfromworld, p, transformed);
      //Matrix4x4_Print(&model->brushq3.num_lightgrid_indexfromworld);
      //Con_Printf("%f %f %f transformed %f %f %f clamped ", p[0], p[1], p[2], transformed[0], transformed[1], transformed[2]);
      transformed[0] = bound(0, transformed[0], model->brushq3.num_lightgrid_isize[0] - 1);
      transformed[1] = bound(0, transformed[1], model->brushq3.num_lightgrid_isize[1] - 1);
      transformed[2] = bound(0, transformed[2], model->brushq3.num_lightgrid_isize[2] - 1);
      index[0] = (int)floor(transformed[0]);
      index[1] = (int)floor(transformed[1]);
      index[2] = (int)floor(transformed[2]);
      //Con_Printf("%f %f %f index %i %i %i:\n", transformed[0], transformed[1], transformed[2], index[0], index[1], index[2]);

      // now lerp the values
      VectorClear(diffusenormal);
      a = &model->brushq3.data_lightgrid[(index[2] * model->brushq3.num_lightgrid_isize[1] + index[1]) * model->brushq3.num_lightgrid_isize[0] + index[0]];
      for (k = 0;k < 2;k++)
      {
            blend1 = (k ? (transformed[2] - index[2]) : (1 - (transformed[2] - index[2])));
            if (blend1 < 0.001f || index[2] + k >= model->brushq3.num_lightgrid_isize[2])
                  continue;
            for (j = 0;j < 2;j++)
            {
                  blend2 = blend1 * (j ? (transformed[1] - index[1]) : (1 - (transformed[1] - index[1])));
                  if (blend2 < 0.001f || index[1] + j >= model->brushq3.num_lightgrid_isize[1])
                        continue;
                  for (i = 0;i < 2;i++)
                  {
                        blend = blend2 * (i ? (transformed[0] - index[0]) : (1 - (transformed[0] - index[0]))) * stylescale;
                        if (blend < 0.001f || index[0] + i >= model->brushq3.num_lightgrid_isize[0])
                              continue;
                        s = a + (k * model->brushq3.num_lightgrid_isize[1] + j) * model->brushq3.num_lightgrid_isize[0] + i;
                        VectorMA(ambientcolor, blend * (1.0f / 128.0f), s->ambientrgb, ambientcolor);
                        VectorMA(diffusecolor, blend * (1.0f / 128.0f), s->diffusergb, diffusecolor);
                        // this uses the mod_md3_sin table because the values are
                        // already in the 0-255 range, the 64+ bias fetches a cosine
                        // instead of a sine value
                        diffusenormal[0] += blend * (mod_md3_sin[64 + s->diffuseyaw] * mod_md3_sin[s->diffusepitch]);
                        diffusenormal[1] += blend * (mod_md3_sin[     s->diffuseyaw] * mod_md3_sin[s->diffusepitch]);
                        diffusenormal[2] += blend * (mod_md3_sin[64 + s->diffusepitch]);
                        //Con_Printf("blend %f: ambient %i %i %i, diffuse %i %i %i, diffusepitch %i diffuseyaw %i (%f %f, normal %f %f %f)\n", blend, s->ambientrgb[0], s->ambientrgb[1], s->ambientrgb[2], s->diffusergb[0], s->diffusergb[1], s->diffusergb[2], s->diffusepitch, s->diffuseyaw, pitch, yaw, (cos(yaw) * cospitch), (sin(yaw) * cospitch), (-sin(pitch)));
                  }
            }
      }

      // normalize the light direction before turning
      VectorNormalize(diffusenormal);
      //Con_Printf("result: ambient %f %f %f diffuse %f %f %f diffusenormal %f %f %f\n", ambientcolor[0], ambientcolor[1], ambientcolor[2], diffusecolor[0], diffusecolor[1], diffusecolor[2], diffusenormal[0], diffusenormal[1], diffusenormal[2]);
}

static int Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(mnode_t *node, double p1[3], double p2[3])
{
      double t1, t2;
      double midf, mid[3];
      int ret, side;

      // check for empty
      while (node->plane)
      {
            // find the point distances
            mplane_t *plane = node->plane;
            if (plane->type < 3)
            {
                  t1 = p1[plane->type] - plane->dist;
                  t2 = p2[plane->type] - plane->dist;
            }
            else
            {
                  t1 = DotProduct (plane->normal, p1) - plane->dist;
                  t2 = DotProduct (plane->normal, p2) - plane->dist;
            }

            if (t1 < 0)
            {
                  if (t2 < 0)
                  {
                        node = node->children[1];
                        continue;
                  }
                  side = 1;
            }
            else
            {
                  if (t2 >= 0)
                  {
                        node = node->children[0];
                        continue;
                  }
                  side = 0;
            }

            midf = t1 / (t1 - t2);
            VectorLerp(p1, midf, p2, mid);

            // recurse both sides, front side first
            // return 2 if empty is followed by solid (hit something)
            // do not return 2 if both are solid or both empty,
            // or if start is solid and end is empty
            // as these degenerate cases usually indicate the eye is in solid and
            // should see the target point anyway
            ret = Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side    ], p1, mid);
            if (ret != 0)
                  return ret;
            ret = Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(node->children[side ^ 1], mid, p2);
            if (ret != 1)
                  return ret;
            return 2;
      }
      return ((mleaf_t *)node)->clusterindex < 0;
}

static qboolean Mod_Q3BSP_TraceLineOfSight(struct model_s *model, const vec3_t start, const vec3_t end)
{
      if (model->brush.submodel || mod_q3bsp_tracelineofsight_brushes.integer)
      {
            trace_t trace;
            model->TraceLine(model, NULL, NULL, &trace, start, end, SUPERCONTENTS_VISBLOCKERMASK);
            return trace.fraction == 1;
      }
      else
      {
            double tracestart[3], traceend[3];
            VectorCopy(start, tracestart);
            VectorCopy(end, traceend);
            return !Mod_Q3BSP_TraceLineOfSight_RecursiveNodeCheck(model->brush.data_nodes, tracestart, traceend);
      }
}

void Mod_CollisionBIH_TracePoint(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
      const bih_t *bih;
      const bih_leaf_t *leaf;
      const bih_node_t *node;
      const colbrushf_t *brush;
      int axis;
      int nodenum;
      int nodestackpos = 0;
      int nodestack[1024];

      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;

      bih = &model->collision_bih;
      if(!bih->nodes)
            return;

      nodenum = bih->rootnode;
      nodestack[nodestackpos++] = nodenum;
      while (nodestackpos)
      {
            nodenum = nodestack[--nodestackpos];
            node = bih->nodes + nodenum;
#if 1
            if (!BoxesOverlap(start, start, node->mins, node->maxs))
                  continue;
#endif
            if (node->type <= BIH_SPLITZ && nodestackpos+2 <= 1024)
            {
                  axis = node->type - BIH_SPLITX;
                  if (start[axis] >= node->frontmin)
                        nodestack[nodestackpos++] = node->front;
                  if (start[axis] <= node->backmax)
                        nodestack[nodestackpos++] = node->back;
            }
            else if (node->type == BIH_UNORDERED)
            {
                  for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
                  {
                        leaf = bih->leafs + node->children[axis];
#if 1
                        if (!BoxesOverlap(start, start, leaf->mins, leaf->maxs))
                              continue;
#endif
                        switch(leaf->type)
                        {
                        case BIH_BRUSH:
                              brush = model->brush.data_brushes[leaf->itemindex].colbrushf;
                              Collision_TracePointBrushFloat(trace, start, brush);
                              break;
                        case BIH_COLLISIONTRIANGLE:
                              // collision triangle - skipped because they have no volume
                              break;
                        case BIH_RENDERTRIANGLE:
                              // render triangle - skipped because they have no volume
                              break;
                        }
                  }
            }
      }
}

void Mod_CollisionBIH_TraceLineShared(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask, const bih_t *bih)
{
      const bih_leaf_t *leaf;
      const bih_node_t *node;
      const colbrushf_t *brush;
      const int *e;
      const texture_t *texture;
      vec3_t nodebigmins, nodebigmaxs, nodestart, nodeend, sweepnodemins, sweepnodemaxs;
      vec_t d1, d2, d3, d4, f, nodestackline[1024][6];
      int axis, nodenum, nodestackpos = 0, nodestack[1024];

      if(!bih->nodes)
            return;

      if (VectorCompare(start, end))
      {
            Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
            return;
      }

      nodenum = bih->rootnode;

      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;

      // push first node
      nodestackline[nodestackpos][0] = start[0];
      nodestackline[nodestackpos][1] = start[1];
      nodestackline[nodestackpos][2] = start[2];
      nodestackline[nodestackpos][3] = end[0];
      nodestackline[nodestackpos][4] = end[1];
      nodestackline[nodestackpos][5] = end[2];
      nodestack[nodestackpos++] = nodenum;
      while (nodestackpos)
      {
            nodenum = nodestack[--nodestackpos];
            node = bih->nodes + nodenum;
            VectorCopy(nodestackline[nodestackpos], nodestart);
            VectorCopy(nodestackline[nodestackpos] + 3, nodeend);
            sweepnodemins[0] = min(nodestart[0], nodeend[0]); sweepnodemins[1] = min(nodestart[1], nodeend[1]); sweepnodemins[2] = min(nodestart[2], nodeend[2]); sweepnodemaxs[0] = max(nodestart[0], nodeend[0]); sweepnodemaxs[1] = max(nodestart[1], nodeend[1]); sweepnodemaxs[2] = max(nodestart[2], nodeend[2]);
            if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, node->mins, node->maxs))
                  continue;
            if (node->type <= BIH_SPLITZ && nodestackpos+2 <= 1024)
            {
                  // recurse children of the split
                  axis = node->type - BIH_SPLITX;
                  d1 = node->backmax - nodestart[axis];
                  d2 = node->backmax - nodeend[axis];
                  d3 = nodestart[axis] - node->frontmin;
                  d4 = nodeend[axis] - node->frontmin;
                  switch((d1 < 0) | ((d2 < 0) << 1) | ((d3 < 0) << 2) | ((d4 < 0) << 3))
                  {
                  case  0: /* >>>> */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  1: /* <>>> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  2: /* ><>> */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  3: /* <<>> */                                                                                                                                                                                                                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  4: /* >><> */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  5: /* <><> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  6: /* ><<> */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  7: /* <<<> */                                                                                                                                                                                                  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  8: /* >>>< */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  9: /* <>>< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case 10: /* ><>< */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case 11: /* <<>< */                                                                                                                                                                                                  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case 12: /* >><< */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                                                                                                                                                                                                   break;
                  case 13: /* <><< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                                                                                                                                                                                                   break;
                  case 14: /* ><<< */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                                                                                                                                                                                                   break;
                  case 15: /* <<<< */                                                                                                                                                                                                                                                                                                                                                                                                   break;
                  }
            }
            else if (node->type == BIH_UNORDERED)
            {
                  // calculate sweep bounds for this node
                  // copy node bounds into local variables
                  VectorCopy(node->mins, nodebigmins);
                  VectorCopy(node->maxs, nodebigmaxs);
                  // clip line to this node bounds
                  axis = 0; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
                  axis = 1; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
                  axis = 2; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
                  // some of the line intersected the enlarged node box
                  // calculate sweep bounds for this node
                  sweepnodemins[0] = min(nodestart[0], nodeend[0]); sweepnodemins[1] = min(nodestart[1], nodeend[1]); sweepnodemins[2] = min(nodestart[2], nodeend[2]); sweepnodemaxs[0] = max(nodestart[0], nodeend[0]); sweepnodemaxs[1] = max(nodestart[1], nodeend[1]); sweepnodemaxs[2] = max(nodestart[2], nodeend[2]);
                  for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
                  {
                        leaf = bih->leafs + node->children[axis];
                        if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, leaf->mins, leaf->maxs))
                              continue;
                        switch(leaf->type)
                        {
                        case BIH_BRUSH:
                              brush = model->brush.data_brushes[leaf->itemindex].colbrushf;
                              Collision_TraceLineBrushFloat(trace, start, end, brush, brush);
                              break;
                        case BIH_COLLISIONTRIANGLE:
                              if (!mod_q3bsp_curves_collisions.integer)
                                    continue;
                              e = model->brush.data_collisionelement3i + 3*leaf->itemindex;
                              texture = model->data_textures + leaf->textureindex;
                              Collision_TraceLineTriangleFloat(trace, start, end, model->brush.data_collisionvertex3f + e[0] * 3, model->brush.data_collisionvertex3f + e[1] * 3, model->brush.data_collisionvertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
                              break;
                        case BIH_RENDERTRIANGLE:
                              e = model->surfmesh.data_element3i + 3*leaf->itemindex;
                              texture = model->data_textures + leaf->textureindex;
                              Collision_TraceLineTriangleFloat(trace, start, end, model->surfmesh.data_vertex3f + e[0] * 3, model->surfmesh.data_vertex3f + e[1] * 3, model->surfmesh.data_vertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
                              break;
                        }
                  }
            }
      }
}

void Mod_CollisionBIH_TraceLine(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
      if (VectorCompare(start, end))
      {
            Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
            return;
      }
      Mod_CollisionBIH_TraceLineShared(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask, &model->collision_bih);
}

void Mod_CollisionBIH_TraceBrush(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, colbrushf_t *thisbrush_start, colbrushf_t *thisbrush_end, int hitsupercontentsmask)
{
      const bih_t *bih;
      const bih_leaf_t *leaf;
      const bih_node_t *node;
      const colbrushf_t *brush;
      const int *e;
      const texture_t *texture;
      vec3_t start, end, startmins, startmaxs, endmins, endmaxs, mins, maxs;
      vec3_t nodebigmins, nodebigmaxs, nodestart, nodeend, sweepnodemins, sweepnodemaxs;
      vec_t d1, d2, d3, d4, f, nodestackline[1024][6];
      int axis, nodenum, nodestackpos = 0, nodestack[1024];

      if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(thisbrush_start->mins, thisbrush_start->maxs) && VectorCompare(thisbrush_end->mins, thisbrush_end->maxs))
      {
            if (VectorCompare(thisbrush_start->mins, thisbrush_end->mins))
                  Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, thisbrush_start->mins, hitsupercontentsmask);
            else
                  Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, thisbrush_start->mins, thisbrush_end->mins, hitsupercontentsmask);
            return;
      }

      bih = &model->collision_bih;
      if(!bih->nodes)
            return;
      nodenum = bih->rootnode;

      // box trace, performed as brush trace
      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;

      // calculate tracebox-like parameters for efficient culling
      VectorMAM(0.5f, thisbrush_start->mins, 0.5f, thisbrush_start->maxs, start);
      VectorMAM(0.5f, thisbrush_end->mins, 0.5f, thisbrush_end->maxs, end);
      VectorSubtract(thisbrush_start->mins, start, startmins);
      VectorSubtract(thisbrush_start->maxs, start, startmaxs);
      VectorSubtract(thisbrush_end->mins, end, endmins);
      VectorSubtract(thisbrush_end->maxs, end, endmaxs);
      mins[0] = min(startmins[0], endmins[0]);
      mins[1] = min(startmins[1], endmins[1]);
      mins[2] = min(startmins[2], endmins[2]);
      maxs[0] = max(startmaxs[0], endmaxs[0]);
      maxs[1] = max(startmaxs[1], endmaxs[1]);
      maxs[2] = max(startmaxs[2], endmaxs[2]);

      // push first node
      nodestackline[nodestackpos][0] = start[0];
      nodestackline[nodestackpos][1] = start[1];
      nodestackline[nodestackpos][2] = start[2];
      nodestackline[nodestackpos][3] = end[0];
      nodestackline[nodestackpos][4] = end[1];
      nodestackline[nodestackpos][5] = end[2];
      nodestack[nodestackpos++] = nodenum;
      while (nodestackpos)
      {
            nodenum = nodestack[--nodestackpos];
            node = bih->nodes + nodenum;
            VectorCopy(nodestackline[nodestackpos], nodestart);
            VectorCopy(nodestackline[nodestackpos] + 3, nodeend);
            sweepnodemins[0] = min(nodestart[0], nodeend[0]) + mins[0]; sweepnodemins[1] = min(nodestart[1], nodeend[1]) + mins[1]; sweepnodemins[2] = min(nodestart[2], nodeend[2]) + mins[2]; sweepnodemaxs[0] = max(nodestart[0], nodeend[0]) + maxs[0]; sweepnodemaxs[1] = max(nodestart[1], nodeend[1]) + maxs[1]; sweepnodemaxs[2] = max(nodestart[2], nodeend[2]) + maxs[2];
            if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, node->mins, node->maxs))
                  continue;
            if (node->type <= BIH_SPLITZ && nodestackpos+2 <= 1024)
            {
                  // recurse children of the split
                  axis = node->type - BIH_SPLITX;
                  d1 = node->backmax - nodestart[axis] - mins[axis];
                  d2 = node->backmax - nodeend[axis] - mins[axis];
                  d3 = nodestart[axis] - node->frontmin + maxs[axis];
                  d4 = nodeend[axis] - node->frontmin + maxs[axis];
                  switch((d1 < 0) | ((d2 < 0) << 1) | ((d3 < 0) << 2) | ((d4 < 0) << 3))
                  {
                  case  0: /* >>>> */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  1: /* <>>> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  2: /* ><>> */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  3: /* <<>> */                                                                                                                                                                                                                      VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  4: /* >><> */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  5: /* <><> */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  6: /* ><<> */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  7: /* <<<> */                                                                                                                                                                                                  f = d3 / (d3 - d4); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  8: /* >>>< */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case  9: /* <>>< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case 10: /* ><>< */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case 11: /* <<>< */                                                                                                                                                                                                  f = d3 / (d3 - d4); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->front; break;
                  case 12: /* >><< */                     VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                                                                                                                                                                                                   break;
                  case 13: /* <><< */ f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos]); VectorCopy(              nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                                                                                                                                                                                                   break;
                  case 14: /* ><<< */ f = d1 / (d1 - d2); VectorCopy(nodestart,             nodestackline[nodestackpos]); VectorLerp(nodestart, f, nodeend, nodestackline[nodestackpos] + 3); nodestack[nodestackpos++] = node->back;                                                                                                                                                                                                   break;
                  case 15: /* <<<< */                                                                                                                                                                                                                                                                                                                                                                                                   break;
                  }
            }
            else if (node->type == BIH_UNORDERED)
            {
                  // calculate sweep bounds for this node
                  // copy node bounds into local variables and expand to get Minkowski Sum of the two shapes
                  VectorSubtract(node->mins, maxs, nodebigmins);
                  VectorSubtract(node->maxs, mins, nodebigmaxs);
                  // clip line to this node bounds
                  axis = 0; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
                  axis = 1; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
                  axis = 2; d1 = nodestart[axis] - nodebigmins[axis]; d2 = nodeend[axis] - nodebigmins[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); } d1 = nodebigmaxs[axis] - nodestart[axis]; d2 = nodebigmaxs[axis] - nodeend[axis]; if (d1 < 0) { if (d2 < 0) continue; f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodestart); } else if (d2 < 0) { f = d1 / (d1 - d2); VectorLerp(nodestart, f, nodeend, nodeend); }
                  // some of the line intersected the enlarged node box
                  // calculate sweep bounds for this node
                  sweepnodemins[0] = min(nodestart[0], nodeend[0]) + mins[0]; sweepnodemins[1] = min(nodestart[1], nodeend[1]) + mins[1]; sweepnodemins[2] = min(nodestart[2], nodeend[2]) + mins[2]; sweepnodemaxs[0] = max(nodestart[0], nodeend[0]) + maxs[0]; sweepnodemaxs[1] = max(nodestart[1], nodeend[1]) + maxs[1]; sweepnodemaxs[2] = max(nodestart[2], nodeend[2]) + maxs[2];
                  for (axis = 0;axis < BIH_MAXUNORDEREDCHILDREN && node->children[axis] >= 0;axis++)
                  {
                        leaf = bih->leafs + node->children[axis];
                        if (!BoxesOverlap(sweepnodemins, sweepnodemaxs, leaf->mins, leaf->maxs))
                              continue;
                        switch(leaf->type)
                        {
                        case BIH_BRUSH:
                              brush = model->brush.data_brushes[leaf->itemindex].colbrushf;
                              Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, brush, brush);
                              break;
                        case BIH_COLLISIONTRIANGLE:
                              if (!mod_q3bsp_curves_collisions.integer)
                                    continue;
                              e = model->brush.data_collisionelement3i + 3*leaf->itemindex;
                              texture = model->data_textures + leaf->textureindex;
                              Collision_TraceBrushTriangleFloat(trace, thisbrush_start, thisbrush_end, model->brush.data_collisionvertex3f + e[0] * 3, model->brush.data_collisionvertex3f + e[1] * 3, model->brush.data_collisionvertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
                              break;
                        case BIH_RENDERTRIANGLE:
                              e = model->surfmesh.data_element3i + 3*leaf->itemindex;
                              texture = model->data_textures + leaf->textureindex;
                              Collision_TraceBrushTriangleFloat(trace, thisbrush_start, thisbrush_end, model->surfmesh.data_vertex3f + e[0] * 3, model->surfmesh.data_vertex3f + e[1] * 3, model->surfmesh.data_vertex3f + e[2] * 3, texture->supercontents, texture->surfaceflags, texture);
                              break;
                        }
                  }
            }
      }
}

void Mod_CollisionBIH_TraceBox(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
{
      colboxbrushf_t thisbrush_start, thisbrush_end;
      vec3_t boxstartmins, boxstartmaxs, boxendmins, boxendmaxs;

      // box trace, performed as brush trace
      VectorAdd(start, boxmins, boxstartmins);
      VectorAdd(start, boxmaxs, boxstartmaxs);
      VectorAdd(end, boxmins, boxendmins);
      VectorAdd(end, boxmaxs, boxendmaxs);
      Collision_BrushForBox(&thisbrush_start, boxstartmins, boxstartmaxs, 0, 0, NULL);
      Collision_BrushForBox(&thisbrush_end, boxendmins, boxendmaxs, 0, 0, NULL);
      Mod_CollisionBIH_TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
}


int Mod_CollisionBIH_PointSuperContents(struct model_s *model, int frame, const vec3_t point)
{
      trace_t trace;
      Mod_CollisionBIH_TracePoint(model, NULL, NULL, &trace, point, 0);
      return trace.startsupercontents;
}

void Mod_CollisionBIH_TracePoint_Mesh(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
#if 0
      // broken - needs to be modified to count front faces and backfaces to figure out if it is in solid
      vec3_t end;
      int hitsupercontents;
      VectorSet(end, start[0], start[1], model->normalmins[2]);
#endif
      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;
#if 0
      Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
      hitsupercontents = trace->hitsupercontents;
      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;
      trace->startsupercontents = hitsupercontents;
#endif
}

int Mod_CollisionBIH_PointSuperContents_Mesh(struct model_s *model, int frame, const vec3_t start)
{
#if 0
      // broken - needs to be modified to count front faces and backfaces to figure out if it is in solid
      trace_t trace;
      vec3_t end;
      VectorSet(end, start[0], start[1], model->normalmins[2]);
      memset(&trace, 0, sizeof(trace));
      trace.fraction = 1;
      trace.realfraction = 1;
      trace.hitsupercontentsmask = 0;
      Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
      return trace.hitsupercontents;
#else
      return 0;
#endif
}

static void Mod_Q3BSP_TracePoint_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const vec3_t point, int markframe)
{
      int i;
      mleaf_t *leaf;
      colbrushf_t *brush;
      // find which leaf the point is in
      while (node->plane)
            node = node->children[(node->plane->type < 3 ? point[node->plane->type] : DotProduct(point, node->plane->normal)) < node->plane->dist];
      // point trace the brushes
      leaf = (mleaf_t *)node;
      for (i = 0;i < leaf->numleafbrushes;i++)
      {
            brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf;
            if (brush && brush->markframe != markframe && BoxesOverlap(point, point, brush->mins, brush->maxs))
            {
                  brush->markframe = markframe;
                  Collision_TracePointBrushFloat(trace, point, brush);
            }
      }
      // can't do point traces on curves (they have no thickness)
}

static void Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const vec3_t start, const vec3_t end, vec_t startfrac, vec_t endfrac, const vec3_t linestart, const vec3_t lineend, int markframe, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
      int i, startside, endside;
      float dist1, dist2, midfrac, mid[3], nodesegmentmins[3], nodesegmentmaxs[3];
      mleaf_t *leaf;
      msurface_t *surface;
      mplane_t *plane;
      colbrushf_t *brush;
      // walk the tree until we hit a leaf, recursing for any split cases
      while (node->plane)
      {
#if 0
            if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs))
                  return;
            Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[0], start, end, startfrac, endfrac, linestart, lineend, markframe, segmentmins, segmentmaxs);
            node = node->children[1];
#else
            // abort if this part of the bsp tree can not be hit by this trace
//          if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
//                return;
            plane = node->plane;
            // axial planes are much more common than non-axial, so an optimized
            // axial case pays off here
            if (plane->type < 3)
            {
                  dist1 = start[plane->type] - plane->dist;
                  dist2 = end[plane->type] - plane->dist;
            }
            else
            {
                  dist1 = DotProduct(start, plane->normal) - plane->dist;
                  dist2 = DotProduct(end, plane->normal) - plane->dist;
            }
            startside = dist1 < 0;
            endside = dist2 < 0;
            if (startside == endside)
            {
                  // most of the time the line fragment is on one side of the plane
                  node = node->children[startside];
            }
            else
            {
                  // line crosses node plane, split the line
                  dist1 = PlaneDiff(linestart, plane);
                  dist2 = PlaneDiff(lineend, plane);
                  midfrac = dist1 / (dist1 - dist2);
                  VectorLerp(linestart, midfrac, lineend, mid);
                  // take the near side first
                  Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[startside], start, mid, startfrac, midfrac, linestart, lineend, markframe, segmentmins, segmentmaxs);
                  // if we found an impact on the front side, don't waste time
                  // exploring the far side
                  if (midfrac <= trace->realfraction)
                        Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, node->children[endside], mid, end, midfrac, endfrac, linestart, lineend, markframe, segmentmins, segmentmaxs);
                  return;
            }
#endif
      }
      // abort if this part of the bsp tree can not be hit by this trace
//    if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
//          return;
      // hit a leaf
      nodesegmentmins[0] = min(start[0], end[0]) - 1;
      nodesegmentmins[1] = min(start[1], end[1]) - 1;
      nodesegmentmins[2] = min(start[2], end[2]) - 1;
      nodesegmentmaxs[0] = max(start[0], end[0]) + 1;
      nodesegmentmaxs[1] = max(start[1], end[1]) + 1;
      nodesegmentmaxs[2] = max(start[2], end[2]) + 1;
      // line trace the brushes
      leaf = (mleaf_t *)node;
#if 0
      if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs))
            return;
#endif
      for (i = 0;i < leaf->numleafbrushes;i++)
      {
            brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf;
            if (brush && brush->markframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, brush->mins, brush->maxs))
            {
                  brush->markframe = markframe;
                  Collision_TraceLineBrushFloat(trace, linestart, lineend, brush, brush);
            }
      }
      // can't do point traces on curves (they have no thickness)
      if (leaf->containscollisionsurfaces && mod_q3bsp_curves_collisions.integer && !VectorCompare(start, end))
      {
            // line trace the curves
            for (i = 0;i < leaf->numleafsurfaces;i++)
            {
                  surface = model->data_surfaces + leaf->firstleafsurface[i];
                  if (surface->num_collisiontriangles && surface->deprecatedq3collisionmarkframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, surface->mins, surface->maxs))
                  {
                        surface->deprecatedq3collisionmarkframe = markframe;
                        Collision_TraceLineTriangleMeshFloat(trace, linestart, lineend, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
                  }
            }
      }
}

static void Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace_t *trace, dp_model_t *model, mnode_t *node, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int markframe, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
      int i;
      int sides;
      mleaf_t *leaf;
      colbrushf_t *brush;
      msurface_t *surface;
      mplane_t *plane;
      float nodesegmentmins[3], nodesegmentmaxs[3];
      // walk the tree until we hit a leaf, recursing for any split cases
      while (node->plane)
      {
#if 0
            if (!BoxesOverlap(segmentmins, segmentmaxs, node->mins, node->maxs))
                  return;
            Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, node->children[0], thisbrush_start, thisbrush_end, markframe, segmentmins, segmentmaxs);
            node = node->children[1];
#else
            // abort if this part of the bsp tree can not be hit by this trace
//          if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
//                return;
            plane = node->plane;
            // axial planes are much more common than non-axial, so an optimized
            // axial case pays off here
            if (plane->type < 3)
            {
                  // this is an axial plane, compare bounding box directly to it and
                  // recurse sides accordingly
                  // recurse down node sides
                  // use an inlined axial BoxOnPlaneSide to slightly reduce overhead
                  //sides = BoxOnPlaneSide(nodesegmentmins, nodesegmentmaxs, plane);
                  //sides = ((segmentmaxs[plane->type] >= plane->dist) | ((segmentmins[plane->type] < plane->dist) << 1));
                  sides = ((segmentmaxs[plane->type] >= plane->dist) + ((segmentmins[plane->type] < plane->dist) * 2));
            }
            else
            {
                  // this is a non-axial plane, so check if the start and end boxes
                  // are both on one side of the plane to handle 'diagonal' cases
                  sides = BoxOnPlaneSide(thisbrush_start->mins, thisbrush_start->maxs, plane) | BoxOnPlaneSide(thisbrush_end->mins, thisbrush_end->maxs, plane);
            }
            if (sides == 3)
            {
                  // segment crosses plane
                  Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, node->children[0], thisbrush_start, thisbrush_end, markframe, segmentmins, segmentmaxs);
                  sides = 2;
            }
            // if sides == 0 then the trace itself is bogus (Not A Number values),
            // in this case we simply pretend the trace hit nothing
            if (sides == 0)
                  return; // ERROR: NAN bounding box!
            // take whichever side the segment box is on
            node = node->children[sides - 1];
#endif
      }
      // abort if this part of the bsp tree can not be hit by this trace
//    if (!(node->combinedsupercontents & trace->hitsupercontentsmask))
//          return;
      nodesegmentmins[0] = max(segmentmins[0], node->mins[0] - 1);
      nodesegmentmins[1] = max(segmentmins[1], node->mins[1] - 1);
      nodesegmentmins[2] = max(segmentmins[2], node->mins[2] - 1);
      nodesegmentmaxs[0] = min(segmentmaxs[0], node->maxs[0] + 1);
      nodesegmentmaxs[1] = min(segmentmaxs[1], node->maxs[1] + 1);
      nodesegmentmaxs[2] = min(segmentmaxs[2], node->maxs[2] + 1);
      // hit a leaf
      leaf = (mleaf_t *)node;
#if 0
      if (!BoxesOverlap(segmentmins, segmentmaxs, leaf->mins, leaf->maxs))
            return;
#endif
      for (i = 0;i < leaf->numleafbrushes;i++)
      {
            brush = model->brush.data_brushes[leaf->firstleafbrush[i]].colbrushf;
            if (brush && brush->markframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, brush->mins, brush->maxs))
            {
                  brush->markframe = markframe;
                  Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, brush, brush);
            }
      }
      if (leaf->containscollisionsurfaces && mod_q3bsp_curves_collisions.integer)
      {
            for (i = 0;i < leaf->numleafsurfaces;i++)
            {
                  surface = model->data_surfaces + leaf->firstleafsurface[i];
                  if (surface->num_collisiontriangles && surface->deprecatedq3collisionmarkframe != markframe && BoxesOverlap(nodesegmentmins, nodesegmentmaxs, surface->mins, surface->maxs))
                  {
                        surface->deprecatedq3collisionmarkframe = markframe;
                        Collision_TraceBrushTriangleMeshFloat(trace, thisbrush_start, thisbrush_end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
                  }
            }
      }
}


static int markframe = 0;

static void Mod_Q3BSP_TracePoint(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, int hitsupercontentsmask)
{
      int i;
      q3mbrush_t *brush;
      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;
      if (mod_collision_bih.integer)
            Mod_CollisionBIH_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
      else if (model->brush.submodel)
      {
            for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
                  if (brush->colbrushf)
                        Collision_TracePointBrushFloat(trace, start, brush->colbrushf);
      }
      else
            Mod_Q3BSP_TracePoint_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, ++markframe);
}

static void Mod_Q3BSP_TraceLine(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
      int i;
      float segmentmins[3], segmentmaxs[3];
      msurface_t *surface;
      q3mbrush_t *brush;

      if (VectorCompare(start, end))
      {
            Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, start, hitsupercontentsmask);
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;
      segmentmins[0] = min(start[0], end[0]) - 1;
      segmentmins[1] = min(start[1], end[1]) - 1;
      segmentmins[2] = min(start[2], end[2]) - 1;
      segmentmaxs[0] = max(start[0], end[0]) + 1;
      segmentmaxs[1] = max(start[1], end[1]) + 1;
      segmentmaxs[2] = max(start[2], end[2]) + 1;
      if (mod_collision_bih.integer)
            Mod_CollisionBIH_TraceLine(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
      else if (model->brush.submodel)
      {
            for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
                  if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs))
                        Collision_TraceLineBrushFloat(trace, start, end, brush->colbrushf, brush->colbrushf);
            if (mod_q3bsp_curves_collisions.integer)
                  for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++)
                        if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs))
                              Collision_TraceLineTriangleMeshFloat(trace, start, end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
      }
      else
            Mod_Q3BSP_TraceLine_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, end, 0, 1, start, end, ++markframe, segmentmins, segmentmaxs);
}

void Mod_Q3BSP_TraceBrush(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, colbrushf_t *start, colbrushf_t *end, int hitsupercontentsmask)
{
      float segmentmins[3], segmentmaxs[3];
      int i;
      msurface_t *surface;
      q3mbrush_t *brush;

      if (mod_q3bsp_optimizedtraceline.integer && VectorCompare(start->mins, start->maxs) && VectorCompare(end->mins, end->maxs))
      {
            if (VectorCompare(start->mins, end->mins))
                  Mod_Q3BSP_TracePoint(model, frameblend, skeleton, trace, start->mins, hitsupercontentsmask);
            else
                  Mod_Q3BSP_TraceLine(model, frameblend, skeleton, trace, start->mins, end->mins, hitsupercontentsmask);
            return;
      }

      // box trace, performed as brush trace
      memset(trace, 0, sizeof(*trace));
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->hitsupercontentsmask = hitsupercontentsmask;
      segmentmins[0] = min(start->mins[0], end->mins[0]);
      segmentmins[1] = min(start->mins[1], end->mins[1]);
      segmentmins[2] = min(start->mins[2], end->mins[2]);
      segmentmaxs[0] = max(start->maxs[0], end->maxs[0]);
      segmentmaxs[1] = max(start->maxs[1], end->maxs[1]);
      segmentmaxs[2] = max(start->maxs[2], end->maxs[2]);
      if (mod_collision_bih.integer)
            Mod_CollisionBIH_TraceBrush(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask);
      else if (model->brush.submodel)
      {
            for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
                  if (brush->colbrushf && BoxesOverlap(segmentmins, segmentmaxs, brush->colbrushf->mins, brush->colbrushf->maxs))
                        Collision_TraceBrushBrushFloat(trace, start, end, brush->colbrushf, brush->colbrushf);
            if (mod_q3bsp_curves_collisions.integer)
                  for (i = 0, surface = model->data_surfaces + model->firstmodelsurface;i < model->nummodelsurfaces;i++, surface++)
                        if (surface->num_collisiontriangles && BoxesOverlap(segmentmins, segmentmaxs, surface->mins, surface->maxs))
                              Collision_TraceBrushTriangleMeshFloat(trace, start, end, surface->num_collisiontriangles, surface->deprecatedq3data_collisionelement3i, surface->deprecatedq3data_collisionvertex3f, surface->deprecatedq3num_collisionbboxstride, surface->deprecatedq3data_collisionbbox6f, surface->texture->supercontents, surface->texture->surfaceflags, surface->texture, segmentmins, segmentmaxs);
      }
      else
            Mod_Q3BSP_TraceBrush_RecursiveBSPNode(trace, model, model->brush.data_nodes, start, end, ++markframe, segmentmins, segmentmaxs);
}

static void Mod_Q3BSP_TraceBox(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t boxmins, const vec3_t boxmaxs, const vec3_t end, int hitsupercontentsmask)
{
      colboxbrushf_t thisbrush_start, thisbrush_end;
      vec3_t boxstartmins, boxstartmaxs, boxendmins, boxendmaxs;

      // box trace, performed as brush trace
      VectorAdd(start, boxmins, boxstartmins);
      VectorAdd(start, boxmaxs, boxstartmaxs);
      VectorAdd(end, boxmins, boxendmins);
      VectorAdd(end, boxmaxs, boxendmaxs);
      Collision_BrushForBox(&thisbrush_start, boxstartmins, boxstartmaxs, 0, 0, NULL);
      Collision_BrushForBox(&thisbrush_end, boxendmins, boxendmaxs, 0, 0, NULL);
      Mod_Q3BSP_TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
}

static int Mod_Q3BSP_PointSuperContents(struct model_s *model, int frame, const vec3_t point)
{
      int i;
      int supercontents = 0;
      q3mbrush_t *brush;
      if (mod_collision_bih.integer)
      {
            trace_t trace;
            Mod_Q3BSP_TracePoint(model, NULL, NULL, &trace, point, 0);
            supercontents = trace.startsupercontents;
      }
      // test if the point is inside each brush
      else if (model->brush.submodel)
      {
            // submodels are effectively one leaf
            for (i = 0, brush = model->brush.data_brushes + model->firstmodelbrush;i < model->nummodelbrushes;i++, brush++)
                  if (brush->colbrushf && Collision_PointInsideBrushFloat(point, brush->colbrushf))
                        supercontents |= brush->colbrushf->supercontents;
      }
      else
      {
            mnode_t *node = model->brush.data_nodes;
            mleaf_t *leaf;
            // find which leaf the point is in
            while (node->plane)
                  node = node->children[(node->plane->type < 3 ? point[node->plane->type] : DotProduct(point, node->plane->normal)) < node->plane->dist];
            leaf = (mleaf_t *)node;
            // now check the brushes in the leaf
            for (i = 0;i < leaf->numleafbrushes;i++)
            {
                  brush = model->brush.data_brushes + leaf->firstleafbrush[i];
                  if (brush->colbrushf && Collision_PointInsideBrushFloat(point, brush->colbrushf))
                        supercontents |= brush->colbrushf->supercontents;
            }
      }
      return supercontents;
}

void Mod_CollisionBIH_TraceLineAgainstSurfaces(dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, trace_t *trace, const vec3_t start, const vec3_t end, int hitsupercontentsmask)
{
      Mod_CollisionBIH_TraceLineShared(model, frameblend, skeleton, trace, start, end, hitsupercontentsmask, &model->render_bih);
}


bih_t *Mod_MakeCollisionBIH(dp_model_t *model, qboolean userendersurfaces, bih_t *out)
{
      int j;
      int bihnumleafs;
      int bihmaxnodes;
      int brushindex;
      int triangleindex;
      int bihleafindex;
      int nummodelbrushes = model->nummodelbrushes;
      int nummodelsurfaces = model->nummodelsurfaces;
      const int *e;
      const int *collisionelement3i;
      const float *collisionvertex3f;
      const int *renderelement3i;
      const float *rendervertex3f;
      bih_leaf_t *bihleafs;
      bih_node_t *bihnodes;
      int *temp_leafsort;
      int *temp_leafsortscratch;
      const msurface_t *surface;
      const q3mbrush_t *brush;

      // find out how many BIH leaf nodes we need
      bihnumleafs = 0;
      if (userendersurfaces)
      {
            for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
                  bihnumleafs += surface->num_triangles;
      }
      else
      {
            for (brushindex = 0, brush = model->brush.data_brushes + brushindex+model->firstmodelbrush;brushindex < nummodelbrushes;brushindex++, brush++)
                  if (brush->colbrushf)
                        bihnumleafs++;
            for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
            {
                  if (surface->texture->basematerialflags & MATERIALFLAG_MESHCOLLISIONS)
                        bihnumleafs += surface->num_triangles + surface->num_collisiontriangles;
                  else
                        bihnumleafs += surface->num_collisiontriangles;
            }
      }

      if (!bihnumleafs)
            return NULL;

      // allocate the memory for the BIH leaf nodes
      bihleafs = (bih_leaf_t *)Mem_Alloc(loadmodel->mempool, sizeof(bih_leaf_t) * bihnumleafs);

      // now populate the BIH leaf nodes
      bihleafindex = 0;

      // add render surfaces
      renderelement3i = model->surfmesh.data_element3i;
      rendervertex3f = model->surfmesh.data_vertex3f;
      for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
      {
            for (triangleindex = 0, e = renderelement3i + 3*surface->num_firsttriangle;triangleindex < surface->num_triangles;triangleindex++, e += 3)
            {
                  if (!userendersurfaces && !(surface->texture->basematerialflags & MATERIALFLAG_MESHCOLLISIONS))
                        continue;
                  bihleafs[bihleafindex].type = BIH_RENDERTRIANGLE;
                  bihleafs[bihleafindex].textureindex = surface->texture - model->data_textures;
                  bihleafs[bihleafindex].surfaceindex = surface - model->data_surfaces;
                  bihleafs[bihleafindex].itemindex = triangleindex+surface->num_firsttriangle;
                  bihleafs[bihleafindex].mins[0] = min(rendervertex3f[3*e[0]+0], min(rendervertex3f[3*e[1]+0], rendervertex3f[3*e[2]+0])) - 1;
                  bihleafs[bihleafindex].mins[1] = min(rendervertex3f[3*e[0]+1], min(rendervertex3f[3*e[1]+1], rendervertex3f[3*e[2]+1])) - 1;
                  bihleafs[bihleafindex].mins[2] = min(rendervertex3f[3*e[0]+2], min(rendervertex3f[3*e[1]+2], rendervertex3f[3*e[2]+2])) - 1;
                  bihleafs[bihleafindex].maxs[0] = max(rendervertex3f[3*e[0]+0], max(rendervertex3f[3*e[1]+0], rendervertex3f[3*e[2]+0])) + 1;
                  bihleafs[bihleafindex].maxs[1] = max(rendervertex3f[3*e[0]+1], max(rendervertex3f[3*e[1]+1], rendervertex3f[3*e[2]+1])) + 1;
                  bihleafs[bihleafindex].maxs[2] = max(rendervertex3f[3*e[0]+2], max(rendervertex3f[3*e[1]+2], rendervertex3f[3*e[2]+2])) + 1;
                  bihleafindex++;
            }
      }

      if (!userendersurfaces)
      {
            // add collision brushes
            for (brushindex = 0, brush = model->brush.data_brushes + brushindex+model->firstmodelbrush;brushindex < nummodelbrushes;brushindex++, brush++)
            {
                  if (!brush->colbrushf)
                        continue;
                  bihleafs[bihleafindex].type = BIH_BRUSH;
                  bihleafs[bihleafindex].textureindex = brush->texture - model->data_textures;
                  bihleafs[bihleafindex].surfaceindex = -1;
                  bihleafs[bihleafindex].itemindex = brushindex+model->firstmodelbrush;
                  VectorCopy(brush->colbrushf->mins, bihleafs[bihleafindex].mins);
                  VectorCopy(brush->colbrushf->maxs, bihleafs[bihleafindex].maxs);
                  bihleafindex++;
            }

            // add collision surfaces
            collisionelement3i = model->brush.data_collisionelement3i;
            collisionvertex3f = model->brush.data_collisionvertex3f;
            for (j = 0, surface = model->data_surfaces + model->firstmodelsurface;j < nummodelsurfaces;j++, surface++)
            {
                  for (triangleindex = 0, e = collisionelement3i + 3*surface->num_firstcollisiontriangle;triangleindex < surface->num_collisiontriangles;triangleindex++, e += 3)
                  {
                        bihleafs[bihleafindex].type = BIH_COLLISIONTRIANGLE;
                        bihleafs[bihleafindex].textureindex = surface->texture - model->data_textures;
                        bihleafs[bihleafindex].surfaceindex = surface - model->data_surfaces;
                        bihleafs[bihleafindex].itemindex = triangleindex+surface->num_firstcollisiontriangle;
                        bihleafs[bihleafindex].mins[0] = min(collisionvertex3f[3*e[0]+0], min(collisionvertex3f[3*e[1]+0], collisionvertex3f[3*e[2]+0])) - 1;
                        bihleafs[bihleafindex].mins[1] = min(collisionvertex3f[3*e[0]+1], min(collisionvertex3f[3*e[1]+1], collisionvertex3f[3*e[2]+1])) - 1;
                        bihleafs[bihleafindex].mins[2] = min(collisionvertex3f[3*e[0]+2], min(collisionvertex3f[3*e[1]+2], collisionvertex3f[3*e[2]+2])) - 1;
                        bihleafs[bihleafindex].maxs[0] = max(collisionvertex3f[3*e[0]+0], max(collisionvertex3f[3*e[1]+0], collisionvertex3f[3*e[2]+0])) + 1;
                        bihleafs[bihleafindex].maxs[1] = max(collisionvertex3f[3*e[0]+1], max(collisionvertex3f[3*e[1]+1], collisionvertex3f[3*e[2]+1])) + 1;
                        bihleafs[bihleafindex].maxs[2] = max(collisionvertex3f[3*e[0]+2], max(collisionvertex3f[3*e[1]+2], collisionvertex3f[3*e[2]+2])) + 1;
                        bihleafindex++;
                  }
            }
      }

      // allocate buffers for the produced and temporary data
      bihmaxnodes = bihnumleafs + 1;
      bihnodes = (bih_node_t *)Mem_Alloc(loadmodel->mempool, sizeof(bih_node_t) * bihmaxnodes);
      temp_leafsort = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int) * bihnumleafs * 2);
      temp_leafsortscratch = temp_leafsort + bihnumleafs;

      // now build it
      BIH_Build(out, bihnumleafs, bihleafs, bihmaxnodes, bihnodes, temp_leafsort, temp_leafsortscratch);

      // we're done with the temporary data
      Mem_Free(temp_leafsort);

      // resize the BIH nodes array if it over-allocated
      if (out->maxnodes > out->numnodes)
      {
            out->maxnodes = out->numnodes;
            out->nodes = (bih_node_t *)Mem_Realloc(loadmodel->mempool, out->nodes, out->numnodes * sizeof(bih_node_t));
      }

      return out;
}

static int Mod_Q3BSP_SuperContentsFromNativeContents(dp_model_t *model, int nativecontents)
{
      int supercontents = 0;
      if (nativecontents & CONTENTSQ3_SOLID)
            supercontents |= SUPERCONTENTS_SOLID;
      if (nativecontents & CONTENTSQ3_WATER)
            supercontents |= SUPERCONTENTS_WATER;
      if (nativecontents & CONTENTSQ3_SLIME)
            supercontents |= SUPERCONTENTS_SLIME;
      if (nativecontents & CONTENTSQ3_LAVA)
            supercontents |= SUPERCONTENTS_LAVA;
      if (nativecontents & CONTENTSQ3_BODY)
            supercontents |= SUPERCONTENTS_BODY;
      if (nativecontents & CONTENTSQ3_CORPSE)
            supercontents |= SUPERCONTENTS_CORPSE;
      if (nativecontents & CONTENTSQ3_NODROP)
            supercontents |= SUPERCONTENTS_NODROP;
      if (nativecontents & CONTENTSQ3_PLAYERCLIP)
            supercontents |= SUPERCONTENTS_PLAYERCLIP;
      if (nativecontents & CONTENTSQ3_MONSTERCLIP)
            supercontents |= SUPERCONTENTS_MONSTERCLIP;
      if (nativecontents & CONTENTSQ3_DONOTENTER)
            supercontents |= SUPERCONTENTS_DONOTENTER;
      if (nativecontents & CONTENTSQ3_BOTCLIP)
            supercontents |= SUPERCONTENTS_BOTCLIP;
      if (!(nativecontents & CONTENTSQ3_TRANSLUCENT))
            supercontents |= SUPERCONTENTS_OPAQUE;
      return supercontents;
}

static int Mod_Q3BSP_NativeContentsFromSuperContents(dp_model_t *model, int supercontents)
{
      int nativecontents = 0;
      if (supercontents & SUPERCONTENTS_SOLID)
            nativecontents |= CONTENTSQ3_SOLID;
      if (supercontents & SUPERCONTENTS_WATER)
            nativecontents |= CONTENTSQ3_WATER;
      if (supercontents & SUPERCONTENTS_SLIME)
            nativecontents |= CONTENTSQ3_SLIME;
      if (supercontents & SUPERCONTENTS_LAVA)
            nativecontents |= CONTENTSQ3_LAVA;
      if (supercontents & SUPERCONTENTS_BODY)
            nativecontents |= CONTENTSQ3_BODY;
      if (supercontents & SUPERCONTENTS_CORPSE)
            nativecontents |= CONTENTSQ3_CORPSE;
      if (supercontents & SUPERCONTENTS_NODROP)
            nativecontents |= CONTENTSQ3_NODROP;
      if (supercontents & SUPERCONTENTS_PLAYERCLIP)
            nativecontents |= CONTENTSQ3_PLAYERCLIP;
      if (supercontents & SUPERCONTENTS_MONSTERCLIP)
            nativecontents |= CONTENTSQ3_MONSTERCLIP;
      if (supercontents & SUPERCONTENTS_DONOTENTER)
            nativecontents |= CONTENTSQ3_DONOTENTER;
      if (supercontents & SUPERCONTENTS_BOTCLIP)
            nativecontents |= CONTENTSQ3_BOTCLIP;
      if (!(supercontents & SUPERCONTENTS_OPAQUE))
            nativecontents |= CONTENTSQ3_TRANSLUCENT;
      return nativecontents;
}

void Mod_Q3BSP_RecursiveFindNumLeafs(mnode_t *node)
{
      int numleafs;
      while (node->plane)
      {
            Mod_Q3BSP_RecursiveFindNumLeafs(node->children[0]);
            node = node->children[1];
      }
      numleafs = ((mleaf_t *)node - loadmodel->brush.data_leafs) + 1;
      if (loadmodel->brush.num_leafs < numleafs)
            loadmodel->brush.num_leafs = numleafs;
}

void Mod_Q3BSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
      int i, j, lumps;
      q3dheader_t *header;
      float corner[3], yawradius, modelradius;

      mod->modeldatatypestring = "Q3BSP";

      mod->type = mod_brushq3;
      mod->numframes = 2; // although alternate textures are not supported it is annoying to complain about no such frame 1
      mod->numskins = 1;

      header = (q3dheader_t *)buffer;
      if((char *) bufferend < (char *) buffer + sizeof(q3dheader_t))
            Host_Error("Mod_Q3BSP_Load: %s is smaller than its header", mod->name);

      i = LittleLong(header->version);
      if (i != Q3BSPVERSION && i != Q3BSPVERSION_IG && i != Q3BSPVERSION_LIVE)
            Host_Error("Mod_Q3BSP_Load: %s has wrong version number (%i, should be %i)", mod->name, i, Q3BSPVERSION);

      mod->soundfromcenter = true;
      mod->TraceBox = Mod_Q3BSP_TraceBox;
      mod->TraceBrush = Mod_Q3BSP_TraceBrush;
      mod->TraceLine = Mod_Q3BSP_TraceLine;
      mod->TracePoint = Mod_Q3BSP_TracePoint;
      mod->PointSuperContents = Mod_Q3BSP_PointSuperContents;
      mod->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLine;
      mod->brush.TraceLineOfSight = Mod_Q3BSP_TraceLineOfSight;
      mod->brush.SuperContentsFromNativeContents = Mod_Q3BSP_SuperContentsFromNativeContents;
      mod->brush.NativeContentsFromSuperContents = Mod_Q3BSP_NativeContentsFromSuperContents;
      mod->brush.GetPVS = Mod_Q1BSP_GetPVS;
      mod->brush.FatPVS = Mod_Q1BSP_FatPVS;
      mod->brush.BoxTouchingPVS = Mod_Q1BSP_BoxTouchingPVS;
      mod->brush.BoxTouchingLeafPVS = Mod_Q1BSP_BoxTouchingLeafPVS;
      mod->brush.BoxTouchingVisibleLeafs = Mod_Q1BSP_BoxTouchingVisibleLeafs;
      mod->brush.FindBoxClusters = Mod_Q1BSP_FindBoxClusters;
      mod->brush.LightPoint = Mod_Q3BSP_LightPoint;
      mod->brush.FindNonSolidLocation = Mod_Q1BSP_FindNonSolidLocation;
      mod->brush.AmbientSoundLevelsForPoint = NULL;
      mod->brush.RoundUpToHullSize = NULL;
      mod->brush.PointInLeaf = Mod_Q1BSP_PointInLeaf;
      mod->Draw = R_Q1BSP_Draw;
      mod->DrawDepth = R_Q1BSP_DrawDepth;
      mod->DrawDebug = R_Q1BSP_DrawDebug;
      mod->DrawPrepass = R_Q1BSP_DrawPrepass;
      mod->GetLightInfo = R_Q1BSP_GetLightInfo;
      mod->CompileShadowMap = R_Q1BSP_CompileShadowMap;
      mod->DrawShadowMap = R_Q1BSP_DrawShadowMap;
      mod->CompileShadowVolume = R_Q1BSP_CompileShadowVolume;
      mod->DrawShadowVolume = R_Q1BSP_DrawShadowVolume;
      mod->DrawLight = R_Q1BSP_DrawLight;

      mod_base = (unsigned char *)header;

      // swap all the lumps
      header->ident = LittleLong(header->ident);
      header->version = LittleLong(header->version);
      lumps = (header->version == Q3BSPVERSION_LIVE) ? Q3HEADER_LUMPS_LIVE : Q3HEADER_LUMPS;
      for (i = 0;i < lumps;i++)
      {
            j = (header->lumps[i].fileofs = LittleLong(header->lumps[i].fileofs));
            if((char *) bufferend < (char *) buffer + j)
                  Host_Error("Mod_Q3BSP_Load: %s has a lump that starts outside the file!", mod->name);
            j += (header->lumps[i].filelen = LittleLong(header->lumps[i].filelen));
            if((char *) bufferend < (char *) buffer + j)
                  Host_Error("Mod_Q3BSP_Load: %s has a lump that ends outside the file!", mod->name);
      }
      /*
       * NO, do NOT clear them!
       * they contain actual data referenced by other stuff.
       * Instead, before using the advertisements lump, check header->versio
       * again!
       * Sorry, but otherwise it breaks memory of the first lump.
      for (i = lumps;i < Q3HEADER_LUMPS_MAX;i++)
      {
            header->lumps[i].fileofs = 0;
            header->lumps[i].filelen = 0;
      }
      */

      mod->brush.qw_md4sum = 0;
      mod->brush.qw_md4sum2 = 0;
      for (i = 0;i < lumps;i++)
      {
            if (i == Q3LUMP_ENTITIES)
                  continue;
            mod->brush.qw_md4sum ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);
            if (i == Q3LUMP_PVS || i == Q3LUMP_LEAFS || i == Q3LUMP_NODES)
                  continue;
            mod->brush.qw_md4sum2 ^= Com_BlockChecksum(mod_base + header->lumps[i].fileofs, header->lumps[i].filelen);

            // all this checksumming can take a while, so let's send keepalives here too
            CL_KeepaliveMessage(false);
      }

      Mod_Q3BSP_LoadEntities(&header->lumps[Q3LUMP_ENTITIES]);
      Mod_Q3BSP_LoadTextures(&header->lumps[Q3LUMP_TEXTURES]);
      Mod_Q3BSP_LoadPlanes(&header->lumps[Q3LUMP_PLANES]);
      if (header->version == Q3BSPVERSION_IG)
            Mod_Q3BSP_LoadBrushSides_IG(&header->lumps[Q3LUMP_BRUSHSIDES]);
      else
            Mod_Q3BSP_LoadBrushSides(&header->lumps[Q3LUMP_BRUSHSIDES]);
      Mod_Q3BSP_LoadBrushes(&header->lumps[Q3LUMP_BRUSHES]);
      Mod_Q3BSP_LoadEffects(&header->lumps[Q3LUMP_EFFECTS]);
      Mod_Q3BSP_LoadVertices(&header->lumps[Q3LUMP_VERTICES]);
      Mod_Q3BSP_LoadTriangles(&header->lumps[Q3LUMP_TRIANGLES]);
      Mod_Q3BSP_LoadLightmaps(&header->lumps[Q3LUMP_LIGHTMAPS], &header->lumps[Q3LUMP_FACES]);
      Mod_Q3BSP_LoadFaces(&header->lumps[Q3LUMP_FACES]);
      Mod_Q3BSP_LoadModels(&header->lumps[Q3LUMP_MODELS]);
      Mod_Q3BSP_LoadLeafBrushes(&header->lumps[Q3LUMP_LEAFBRUSHES]);
      Mod_Q3BSP_LoadLeafFaces(&header->lumps[Q3LUMP_LEAFFACES]);
      Mod_Q3BSP_LoadLeafs(&header->lumps[Q3LUMP_LEAFS]);
      Mod_Q3BSP_LoadNodes(&header->lumps[Q3LUMP_NODES]);
      Mod_Q3BSP_LoadLightGrid(&header->lumps[Q3LUMP_LIGHTGRID]);
      Mod_Q3BSP_LoadPVS(&header->lumps[Q3LUMP_PVS]);
      loadmodel->brush.numsubmodels = loadmodel->brushq3.num_models;

      // the MakePortals code works fine on the q3bsp data as well
      if (mod_bsp_portalize.integer)
            Mod_Q1BSP_MakePortals();

      // FIXME: shader alpha should replace r_wateralpha support in q3bsp
      loadmodel->brush.supportwateralpha = true;

      // make a single combined shadow mesh to allow optimized shadow volume creation
      Mod_Q1BSP_CreateShadowMesh(loadmodel);

      loadmodel->brush.num_leafs = 0;
      Mod_Q3BSP_RecursiveFindNumLeafs(loadmodel->brush.data_nodes);

      if (loadmodel->brush.numsubmodels)
            loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *));

      mod = loadmodel;
      for (i = 0;i < loadmodel->brush.numsubmodels;i++)
      {
            if (i > 0)
            {
                  char name[10];
                  // duplicate the basic information
                  dpsnprintf(name, sizeof(name), "*%i", i);
                  mod = Mod_FindName(name, loadmodel->name);
                  // copy the base model to this one
                  *mod = *loadmodel;
                  // rename the clone back to its proper name
                  strlcpy(mod->name, name, sizeof(mod->name));
                  mod->brush.parentmodel = loadmodel;
                  // textures and memory belong to the main model
                  mod->texturepool = NULL;
                  mod->mempool = NULL;
                  mod->brush.GetPVS = NULL;
                  mod->brush.FatPVS = NULL;
                  mod->brush.BoxTouchingPVS = NULL;
                  mod->brush.BoxTouchingLeafPVS = NULL;
                  mod->brush.BoxTouchingVisibleLeafs = NULL;
                  mod->brush.FindBoxClusters = NULL;
                  mod->brush.LightPoint = NULL;
                  mod->brush.AmbientSoundLevelsForPoint = NULL;
            }
            mod->brush.submodel = i;
            if (loadmodel->brush.submodels)
                  loadmodel->brush.submodels[i] = mod;

            // make the model surface list (used by shadowing/lighting)
            mod->firstmodelsurface = mod->brushq3.data_models[i].firstface;
            mod->nummodelsurfaces = mod->brushq3.data_models[i].numfaces;
            mod->firstmodelbrush = mod->brushq3.data_models[i].firstbrush;
            mod->nummodelbrushes = mod->brushq3.data_models[i].numbrushes;
            mod->sortedmodelsurfaces = (int *)Mem_Alloc(loadmodel->mempool, mod->nummodelsurfaces * sizeof(*mod->sortedmodelsurfaces));
            Mod_MakeSortedSurfaces(mod);

            VectorCopy(mod->brushq3.data_models[i].mins, mod->normalmins);
            VectorCopy(mod->brushq3.data_models[i].maxs, mod->normalmaxs);
            // enlarge the bounding box to enclose all geometry of this model,
            // because q3map2 sometimes lies (mostly to affect the lightgrid),
            // which can in turn mess up the farclip (as well as culling when
            // outside the level - an unimportant concern)

            //printf("Editing model %d... BEFORE re-bounding: %f %f %f - %f %f %f\n", i, mod->normalmins[0], mod->normalmins[1], mod->normalmins[2], mod->normalmaxs[0], mod->normalmaxs[1], mod->normalmaxs[2]);
            for (j = 0;j < mod->nummodelsurfaces;j++)
            {
                  const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface;
                  const float *v = mod->surfmesh.data_vertex3f + 3 * surface->num_firstvertex;
                  int k;
                  if (!surface->num_vertices)
                        continue;
                  for (k = 0;k < surface->num_vertices;k++, v += 3)
                  {
                        mod->normalmins[0] = min(mod->normalmins[0], v[0]);
                        mod->normalmins[1] = min(mod->normalmins[1], v[1]);
                        mod->normalmins[2] = min(mod->normalmins[2], v[2]);
                        mod->normalmaxs[0] = max(mod->normalmaxs[0], v[0]);
                        mod->normalmaxs[1] = max(mod->normalmaxs[1], v[1]);
                        mod->normalmaxs[2] = max(mod->normalmaxs[2], v[2]);
                  }
            }
            //printf("Editing model %d... AFTER re-bounding: %f %f %f - %f %f %f\n", i, mod->normalmins[0], mod->normalmins[1], mod->normalmins[2], mod->normalmaxs[0], mod->normalmaxs[1], mod->normalmaxs[2]);
            corner[0] = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0]));
            corner[1] = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1]));
            corner[2] = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2]));
            modelradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]+corner[2]*corner[2]);
            yawradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]);
            mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius;
            mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius;
            mod->yawmaxs[0] = mod->yawmaxs[1] = yawradius;
            mod->yawmins[0] = mod->yawmins[1] = -yawradius;
            mod->yawmins[2] = mod->normalmins[2];
            mod->yawmaxs[2] = mod->normalmaxs[2];
            mod->radius = modelradius;
            mod->radius2 = modelradius * modelradius;

            // this gets altered below if sky or water is used
            mod->DrawSky = NULL;
            mod->DrawAddWaterPlanes = NULL;

            for (j = 0;j < mod->nummodelsurfaces;j++)
                  if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & MATERIALFLAG_SKY)
                        break;
            if (j < mod->nummodelsurfaces)
                  mod->DrawSky = R_Q1BSP_DrawSky;

            for (j = 0;j < mod->nummodelsurfaces;j++)
                  if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))
                        break;
            if (j < mod->nummodelsurfaces)
                  mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes;

            Mod_MakeCollisionBIH(mod, false, &mod->collision_bih);
            Mod_MakeCollisionBIH(mod, true, &mod->render_bih);

            // generate VBOs and other shared data before cloning submodels
            if (i == 0)
                  Mod_BuildVBOs();
      }

      Con_DPrintf("Stats for q3bsp model \"%s\": %i faces, %i nodes, %i leafs, %i clusters, %i clusterportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces);
}

void Mod_IBSP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
      int i = LittleLong(((int *)buffer)[1]);
      if (i == Q3BSPVERSION || i == Q3BSPVERSION_IG || i == Q3BSPVERSION_LIVE)
            Mod_Q3BSP_Load(mod,buffer, bufferend);
      else if (i == Q2BSPVERSION)
            Mod_Q2BSP_Load(mod,buffer, bufferend);
      else
            Host_Error("Mod_IBSP_Load: unknown/unsupported version %i", i);
}

void Mod_MAP_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
      Host_Error("Mod_MAP_Load: not yet implemented");
}

07211 typedef struct objvertex_s
{
      int nextindex;
      int submodelindex;
      int textureindex;
      float v[3];
      float vt[2];
      float vn[3];
}
objvertex_t;

static unsigned char nobsp_pvs[1] = {1};

void Mod_OBJ_Load(dp_model_t *mod, void *buffer, void *bufferend)
{
      const char *textbase = (char *)buffer, *text = textbase;
      char *s;
      char *argv[512];
      char line[1024];
      char materialname[MAX_QPATH];
      int i, j, l, numvertices, firstvertex, firsttriangle, elementindex, vertexindex, surfacevertices, surfacetriangles, surfaceelements, submodelindex = 0;
      int index1, index2, index3;
      objvertex_t vfirst, vprev, vcurrent;
      int argc;
      int linelen;
      int numtriangles = 0;
      int maxtriangles = 0;
      objvertex_t *vertices = NULL;
      int linenumber = 0;
      int maxtextures = 0, numtextures = 0, textureindex = 0;
      int maxv = 0, numv = 1;
      int maxvt = 0, numvt = 1;
      int maxvn = 0, numvn = 1;
      char *texturenames = NULL;
      float dist, modelradius, modelyawradius, yawradius;
      float *v = NULL;
      float *vt = NULL;
      float *vn = NULL;
      float mins[3];
      float maxs[3];
      float corner[3];
      objvertex_t *thisvertex = NULL;
      int vertexhashindex;
      int *vertexhashtable = NULL;
      objvertex_t *vertexhashdata = NULL;
      objvertex_t *vdata = NULL;
      int vertexhashsize = 0;
      int vertexhashcount = 0;
      skinfile_t *skinfiles = NULL;
      unsigned char *data = NULL;
      int *submodelfirstsurface;
      msurface_t *surface;
      msurface_t *tempsurfaces;

      memset(&vfirst, 0, sizeof(vfirst));
      memset(&vprev, 0, sizeof(vprev));
      memset(&vcurrent, 0, sizeof(vcurrent));

      dpsnprintf(materialname, sizeof(materialname), "%s", loadmodel->name);

      loadmodel->modeldatatypestring = "OBJ";

      loadmodel->type = mod_obj;
      loadmodel->soundfromcenter = true;
      loadmodel->TraceBox = Mod_CollisionBIH_TraceBox;
      loadmodel->TraceBrush = Mod_CollisionBIH_TraceBrush;
      loadmodel->TraceLine = Mod_CollisionBIH_TraceLine;
      loadmodel->TracePoint = Mod_CollisionBIH_TracePoint_Mesh;
      loadmodel->TraceLineAgainstSurfaces = Mod_CollisionBIH_TraceLine;
      loadmodel->PointSuperContents = Mod_CollisionBIH_PointSuperContents_Mesh;
      loadmodel->brush.TraceLineOfSight = NULL;
      loadmodel->brush.SuperContentsFromNativeContents = NULL;
      loadmodel->brush.NativeContentsFromSuperContents = NULL;
      loadmodel->brush.GetPVS = NULL;
      loadmodel->brush.FatPVS = NULL;
      loadmodel->brush.BoxTouchingPVS = NULL;
      loadmodel->brush.BoxTouchingLeafPVS = NULL;
      loadmodel->brush.BoxTouchingVisibleLeafs = NULL;
      loadmodel->brush.FindBoxClusters = NULL;
      loadmodel->brush.LightPoint = NULL;
      loadmodel->brush.FindNonSolidLocation = NULL;
      loadmodel->brush.AmbientSoundLevelsForPoint = NULL;
      loadmodel->brush.RoundUpToHullSize = NULL;
      loadmodel->brush.PointInLeaf = NULL;
      loadmodel->Draw = R_Q1BSP_Draw;
      loadmodel->DrawDepth = R_Q1BSP_DrawDepth;
      loadmodel->DrawDebug = R_Q1BSP_DrawDebug;
      loadmodel->DrawPrepass = R_Q1BSP_DrawPrepass;
      loadmodel->GetLightInfo = R_Q1BSP_GetLightInfo;
      loadmodel->CompileShadowMap = R_Q1BSP_CompileShadowMap;
      loadmodel->DrawShadowMap = R_Q1BSP_DrawShadowMap;
      loadmodel->CompileShadowVolume = R_Q1BSP_CompileShadowVolume;
      loadmodel->DrawShadowVolume = R_Q1BSP_DrawShadowVolume;
      loadmodel->DrawLight = R_Q1BSP_DrawLight;

      skinfiles = Mod_LoadSkinFiles();
      if (loadmodel->numskins < 1)
            loadmodel->numskins = 1;

      // make skinscenes for the skins (no groups)
      loadmodel->skinscenes = (animscene_t *)Mem_Alloc(loadmodel->mempool, sizeof(animscene_t) * loadmodel->numskins);
      for (i = 0;i < loadmodel->numskins;i++)
      {
            loadmodel->skinscenes[i].firstframe = i;
            loadmodel->skinscenes[i].framecount = 1;
            loadmodel->skinscenes[i].loop = true;
            loadmodel->skinscenes[i].framerate = 10;
      }

      VectorClear(mins);
      VectorClear(maxs);

      // we always have model 0, i.e. the first "submodel"
      loadmodel->brush.numsubmodels = 1;

      // parse the OBJ text now
      for(;;)
      {
            static char emptyarg[1] = "";
            if (!*text)
                  break;
            linenumber++;
            linelen = 0;
            for (linelen = 0;text[linelen] && text[linelen] != '\r' && text[linelen] != '\n';linelen++)
                  line[linelen] = text[linelen];
            line[linelen] = 0;
            for (argc = 0;argc < 4;argc++)
                  argv[argc] = emptyarg;
            argc = 0;
            s = line;
            while (*s == ' ' || *s == '\t')
                  s++;
            while (*s)
            {
                  argv[argc++] = s;
                  while (*s > ' ')
                        s++;
                  if (!*s)
                        break;
                  *s++ = 0;
                  while (*s == ' ' || *s == '\t')
                        s++;
            }
            text += linelen;
            if (*text == '\r')
                  text++;
            if (*text == '\n')
                  text++;
            if (!argc)
                  continue;
            if (argv[0][0] == '#')
                  continue;
            if (!strcmp(argv[0], "v"))
            {
                  if (maxv <= numv)
                  {
                        maxv = max(maxv * 2, 1024);
                        v = (float *)Mem_Realloc(tempmempool, v, maxv * sizeof(float[3]));
                  }
                  v[numv*3+0] = atof(argv[1]);
                  v[numv*3+2] = atof(argv[2]);
                  v[numv*3+1] = atof(argv[3]);
                  numv++;
            }
            else if (!strcmp(argv[0], "vt"))
            {
                  if (maxvt <= numvt)
                  {
                        maxvt = max(maxvt * 2, 1024);
                        vt = (float *)Mem_Realloc(tempmempool, vt, maxvt * sizeof(float[2]));
                  }
                  vt[numvt*2+0] = atof(argv[1]);
                  vt[numvt*2+1] = 1-atof(argv[2]);
                  numvt++;
            }
            else if (!strcmp(argv[0], "vn"))
            {
                  if (maxvn <= numvn)
                  {
                        maxvn = max(maxvn * 2, 1024);
                        vn = (float *)Mem_Realloc(tempmempool, vn, maxvn * sizeof(float[3]));
                  }
                  vn[numvn*3+0] = atof(argv[1]);
                  vn[numvn*3+2] = atof(argv[2]);
                  vn[numvn*3+1] = atof(argv[3]);
                  numvn++;
            }
            else if (!strcmp(argv[0], "f"))
            {
                  if (!numtextures)
                  {
                        if (maxtextures <= numtextures)
                        {
                              maxtextures = max(maxtextures * 2, 256);
                              texturenames = (char *)Mem_Realloc(loadmodel->mempool, texturenames, maxtextures * MAX_QPATH);
                        }
                        textureindex = numtextures++;
                        strlcpy(texturenames + textureindex*MAX_QPATH, loadmodel->name, MAX_QPATH);
                  }
                  for (j = 1;j < argc;j++)
                  {
                        index1 = atoi(argv[j]);
                        while(argv[j][0] && argv[j][0] != '/')
                              argv[j]++;
                        if (argv[j][0])
                              argv[j]++;
                        index2 = atoi(argv[j]);
                        while(argv[j][0] && argv[j][0] != '/')
                              argv[j]++;
                        if (argv[j][0])
                              argv[j]++;
                        index3 = atoi(argv[j]);
                        // negative refers to a recent vertex
                        // zero means not specified
                        // positive means an absolute vertex index
                        if (index1 < 0)
                              index1 = numv - index1;
                        if (index2 < 0)
                              index2 = numvt - index2;
                        if (index3 < 0)
                              index3 = numvn - index3;
                        vcurrent.nextindex = -1;
                        vcurrent.textureindex = textureindex;
                        vcurrent.submodelindex = submodelindex;
                        if (v && index1 >= 0 && index1 < numv)
                              VectorCopy(v + 3*index1, vcurrent.v);
                        if (vt && index2 >= 0 && index2 < numvt)
                              Vector2Copy(vt + 2*index2, vcurrent.vt);
                        if (vn && index3 >= 0 && index3 < numvn)
                              VectorCopy(vn + 3*index3, vcurrent.vn);
                        if (numtriangles == 0)
                        {
                              VectorCopy(vcurrent.v, mins);
                              VectorCopy(vcurrent.v, maxs);
                        }
                        else
                        {
                              mins[0] = min(mins[0], vcurrent.v[0]);
                              mins[1] = min(mins[1], vcurrent.v[1]);
                              mins[2] = min(mins[2], vcurrent.v[2]);
                              maxs[0] = max(maxs[0], vcurrent.v[0]);
                              maxs[1] = max(maxs[1], vcurrent.v[1]);
                              maxs[2] = max(maxs[2], vcurrent.v[2]);
                        }
                        if (j == 1)
                              vfirst = vcurrent;
                        else if (j >= 3)
                        {
                              if (maxtriangles <= numtriangles)
                              {
                                    maxtriangles = max(maxtriangles * 2, 32768);
                                    vertices = (objvertex_t*)Mem_Realloc(loadmodel->mempool, vertices, maxtriangles * sizeof(objvertex_t[3]));
                              }
                              vertices[numtriangles*3+0] = vfirst;
                              vertices[numtriangles*3+1] = vprev;
                              vertices[numtriangles*3+2] = vcurrent;
                              numtriangles++;
                        }
                        vprev = vcurrent;
                  }
            }
            else if (!strcmp(argv[0], "o") || !strcmp(argv[0], "g"))
            {
                  submodelindex = atof(argv[1]);
                  loadmodel->brush.numsubmodels = max(submodelindex + 1, loadmodel->brush.numsubmodels);
            }
            else if (!strcmp(argv[0], "usemtl"))
            {
                  for (i = 0;i < numtextures;i++)
                        if (!strcmp(texturenames+i*MAX_QPATH, argv[1]))
                              break;
                  if (i < numtextures)
                        textureindex = i;
                  else
                  {
                        if (maxtextures <= numtextures)
                        {
                              maxtextures = max(maxtextures * 2, 256);
                              texturenames = (char *)Mem_Realloc(loadmodel->mempool, texturenames, maxtextures * MAX_QPATH);
                        }
                        textureindex = numtextures++;
                        strlcpy(texturenames + textureindex*MAX_QPATH, argv[1], MAX_QPATH);
                  }
            }
      }

      // now that we have the OBJ data loaded as-is, we can convert it

      // copy the model bounds, then enlarge the yaw and rotated bounds according to radius
      VectorCopy(mins, loadmodel->normalmins);
      VectorCopy(maxs, loadmodel->normalmaxs);
      dist = max(fabs(loadmodel->normalmins[0]), fabs(loadmodel->normalmaxs[0]));
      modelyawradius = max(fabs(loadmodel->normalmins[1]), fabs(loadmodel->normalmaxs[1]));
      modelyawradius = dist*dist+modelyawradius*modelyawradius;
      modelradius = max(fabs(loadmodel->normalmins[2]), fabs(loadmodel->normalmaxs[2]));
      modelradius = modelyawradius + modelradius * modelradius;
      modelyawradius = sqrt(modelyawradius);
      modelradius = sqrt(modelradius);
      loadmodel->yawmins[0] = loadmodel->yawmins[1] = -modelyawradius;
      loadmodel->yawmins[2] = loadmodel->normalmins[2];
      loadmodel->yawmaxs[0] = loadmodel->yawmaxs[1] =  modelyawradius;
      loadmodel->yawmaxs[2] = loadmodel->normalmaxs[2];
      loadmodel->rotatedmins[0] = loadmodel->rotatedmins[1] = loadmodel->rotatedmins[2] = -modelradius;
      loadmodel->rotatedmaxs[0] = loadmodel->rotatedmaxs[1] = loadmodel->rotatedmaxs[2] =  modelradius;
      loadmodel->radius = modelradius;
      loadmodel->radius2 = modelradius * modelradius;

      // allocate storage for triangles
      loadmodel->surfmesh.data_element3i = (int *)Mem_Alloc(loadmodel->mempool, numtriangles * sizeof(int[3]));
      // allocate vertex hash structures to build an optimal vertex subset
      vertexhashsize = numtriangles*2;
      vertexhashtable = (int *)Mem_Alloc(loadmodel->mempool, sizeof(int) * vertexhashsize);
      memset(vertexhashtable, 0xFF, sizeof(int) * vertexhashsize);
      vertexhashdata = (objvertex_t *)Mem_Alloc(loadmodel->mempool, sizeof(*vertexhashdata) * numtriangles*3);
      vertexhashcount = 0;

      // gather surface stats for assigning vertex/triangle ranges
      firstvertex = 0;
      firsttriangle = 0;
      elementindex = 0;
      loadmodel->num_surfaces = 0;
      // allocate storage for the worst case number of surfaces, later we resize
      tempsurfaces = (msurface_t *)Mem_Alloc(loadmodel->mempool, numtextures * loadmodel->brush.numsubmodels * sizeof(msurface_t));
      submodelfirstsurface = (int *)Mem_Alloc(loadmodel->mempool, (loadmodel->brush.numsubmodels+1) * sizeof(int));
      surface = tempsurfaces;
      for (submodelindex = 0;submodelindex < loadmodel->brush.numsubmodels;submodelindex++)
      {
            submodelfirstsurface[submodelindex] = loadmodel->num_surfaces;
            for (textureindex = 0;textureindex < numtextures;textureindex++)
            {
                  for (vertexindex = 0;vertexindex < numtriangles*3;vertexindex++)
                  {
                        thisvertex = vertices + vertexindex;
                        if (thisvertex->submodelindex == submodelindex && thisvertex->textureindex == textureindex)
                              break;
                  }
                  // skip the surface creation if there are no triangles for it
                  if (vertexindex == numtriangles*3)
                        continue;
                  // create a surface for these vertices
                  surfacevertices = 0;
                  surfaceelements = 0;
                  // we hack in a texture index in the surface to be fixed up later...
                  surface->texture = (texture_t *)((size_t)textureindex);
                  // calculate bounds as we go
                  VectorCopy(thisvertex->v, surface->mins);
                  VectorCopy(thisvertex->v, surface->maxs);
                  for (;vertexindex < numtriangles*3;vertexindex++)
                  {
                        thisvertex = vertices + vertexindex;
                        if (thisvertex->submodelindex != submodelindex)
                              continue;
                        if (thisvertex->textureindex != textureindex)
                              continue;
                        // add vertex to surface bounds
                        surface->mins[0] = min(surface->mins[0], thisvertex->v[0]);
                        surface->mins[1] = min(surface->mins[1], thisvertex->v[1]);
                        surface->mins[2] = min(surface->mins[2], thisvertex->v[2]);
                        surface->maxs[0] = max(surface->maxs[0], thisvertex->v[0]);
                        surface->maxs[1] = max(surface->maxs[1], thisvertex->v[1]);
                        surface->maxs[2] = max(surface->maxs[2], thisvertex->v[2]);
                        // add the vertex if it is not found in the merged set, and
                        // get its index (triangle element) for the surface
                        vertexhashindex = (unsigned int)(thisvertex->v[0] * 3571 + thisvertex->v[0] * 1777 + thisvertex->v[0] * 457) % (unsigned int)vertexhashsize;
                        for (i = vertexhashtable[vertexhashindex];i >= 0;i = vertexhashdata[i].nextindex)
                        {
                              vdata = vertexhashdata + i;
                              if (vdata->submodelindex == thisvertex->submodelindex && vdata->textureindex == thisvertex->textureindex && VectorCompare(thisvertex->v, vdata->v) && VectorCompare(thisvertex->vn, vdata->vn) && Vector2Compare(thisvertex->vt, vdata->vt))
                                    break;
                        }
                        if (i < 0)
                        {
                              i = vertexhashcount++;
                              vdata = vertexhashdata + i;
                              *vdata = *thisvertex;
                              vdata->nextindex = vertexhashtable[vertexhashindex];
                              vertexhashtable[vertexhashindex] = i;
                              surfacevertices++;
                        }
                        loadmodel->surfmesh.data_element3i[elementindex++] = i;
                        surfaceelements++;
                  }
                  surfacetriangles = surfaceelements / 3;
                  surface->num_vertices = surfacevertices;
                  surface->num_triangles = surfacetriangles;
                  surface->num_firstvertex = firstvertex;
                  surface->num_firsttriangle = firsttriangle;
                  firstvertex += surface->num_vertices;
                  firsttriangle += surface->num_triangles;
                  surface++;
                  loadmodel->num_surfaces++;
            }
      }
      submodelfirstsurface[submodelindex] = loadmodel->num_surfaces;
      numvertices = firstvertex;
      loadmodel->data_surfaces = (msurface_t *)Mem_Realloc(loadmodel->mempool, tempsurfaces, loadmodel->num_surfaces * sizeof(msurface_t));
      tempsurfaces = NULL;

      // allocate storage for final mesh data
      loadmodel->num_textures = numtextures * loadmodel->numskins;
      loadmodel->num_texturesperskin = numtextures;
      data = (unsigned char *)Mem_Alloc(loadmodel->mempool, loadmodel->num_surfaces * sizeof(int) + loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t) + numtriangles * sizeof(int[3]) + (numvertices <= 65536 ? numtriangles * sizeof(unsigned short[3]) : 0) + (r_enableshadowvolumes.integer ? numtriangles * sizeof(int[3]) : 0) + numvertices * sizeof(float[14]) + loadmodel->brush.numsubmodels * sizeof(dp_model_t *));
      loadmodel->brush.submodels = (dp_model_t **)data;data += loadmodel->brush.numsubmodels * sizeof(dp_model_t *);
      loadmodel->sortedmodelsurfaces = (int *)data;data += loadmodel->num_surfaces * sizeof(int);
      loadmodel->data_textures = (texture_t *)data;data += loadmodel->num_surfaces * loadmodel->numskins * sizeof(texture_t);
      loadmodel->surfmesh.num_vertices = numvertices;
      loadmodel->surfmesh.num_triangles = numtriangles;
      if (r_enableshadowvolumes.integer)
            loadmodel->surfmesh.data_neighbor3i = (int *)data;data += numtriangles * sizeof(int[3]);
      loadmodel->surfmesh.data_vertex3f = (float *)data;data += numvertices * sizeof(float[3]);
      loadmodel->surfmesh.data_svector3f = (float *)data;data += numvertices * sizeof(float[3]);
      loadmodel->surfmesh.data_tvector3f = (float *)data;data += numvertices * sizeof(float[3]);
      loadmodel->surfmesh.data_normal3f = (float *)data;data += numvertices * sizeof(float[3]);
      loadmodel->surfmesh.data_texcoordtexture2f = (float *)data;data += numvertices * sizeof(float[2]);
      if (loadmodel->surfmesh.num_vertices <= 65536)
            loadmodel->surfmesh.data_element3s = (unsigned short *)data;data += loadmodel->surfmesh.num_triangles * sizeof(unsigned short[3]);

      for (j = 0;j < loadmodel->surfmesh.num_vertices;j++)
      {
            VectorCopy(vertexhashdata[j].v, loadmodel->surfmesh.data_vertex3f + 3*j);
            VectorCopy(vertexhashdata[j].vn, loadmodel->surfmesh.data_normal3f + 3*j);
            Vector2Copy(vertexhashdata[j].vt, loadmodel->surfmesh.data_texcoordtexture2f + 2*j);
      }

      // load the textures
      for (textureindex = 0;textureindex < numtextures;textureindex++)
            Mod_BuildAliasSkinsFromSkinFiles(loadmodel->data_textures + textureindex, skinfiles, texturenames + textureindex*MAX_QPATH, texturenames + textureindex*MAX_QPATH);
      Mod_FreeSkinFiles(skinfiles);

      // set the surface textures to their real values now that we loaded them...
      for (i = 0;i < loadmodel->num_surfaces;i++)
            loadmodel->data_surfaces[i].texture = loadmodel->data_textures + (size_t)loadmodel->data_surfaces[i].texture;

      // free data
      Mem_Free(vertices);
      Mem_Free(texturenames);
      Mem_Free(v);
      Mem_Free(vt);
      Mem_Free(vn);
      Mem_Free(vertexhashtable);
      Mem_Free(vertexhashdata);

      // make a single combined shadow mesh to allow optimized shadow volume creation
      Mod_Q1BSP_CreateShadowMesh(loadmodel);

      // compute all the mesh information that was not loaded from the file
      if (loadmodel->surfmesh.data_element3s)
            for (i = 0;i < loadmodel->surfmesh.num_triangles*3;i++)
                  loadmodel->surfmesh.data_element3s[i] = loadmodel->surfmesh.data_element3i[i];
      Mod_ValidateElements(loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles, 0, loadmodel->surfmesh.num_vertices, __FILE__, __LINE__);
      // generate normals if the file did not have them
      if (!VectorLength2(loadmodel->surfmesh.data_normal3f))
            Mod_BuildNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_normal3f, r_smoothnormals_areaweighting.integer != 0);
      Mod_BuildTextureVectorsFromNormals(0, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->surfmesh.data_vertex3f, loadmodel->surfmesh.data_texcoordtexture2f, loadmodel->surfmesh.data_normal3f, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.data_svector3f, loadmodel->surfmesh.data_tvector3f, r_smoothnormals_areaweighting.integer != 0);
      if (loadmodel->surfmesh.data_neighbor3i)
            Mod_BuildTriangleNeighbors(loadmodel->surfmesh.data_neighbor3i, loadmodel->surfmesh.data_element3i, loadmodel->surfmesh.num_triangles);

      // if this is a worldmodel and has no BSP tree, create a fake one for the purpose
      loadmodel->brush.num_visleafs = 1;
      loadmodel->brush.num_leafs = 1;
      loadmodel->brush.num_nodes = 0;
      loadmodel->brush.num_leafsurfaces = loadmodel->num_surfaces;
      loadmodel->brush.data_leafs = (mleaf_t *)Mem_Alloc(loadmodel->mempool, loadmodel->brush.num_leafs * sizeof(mleaf_t));
      loadmodel->brush.data_nodes = (mnode_t *)loadmodel->brush.data_leafs;
      loadmodel->brush.num_pvsclusters = 1;
      loadmodel->brush.num_pvsclusterbytes = 1;
      loadmodel->brush.data_pvsclusters = nobsp_pvs;
      //if (loadmodel->num_nodes) loadmodel->data_nodes = (mnode_t *)Mem_Alloc(loadmodel->mempool, loadmodel->num_nodes * sizeof(mnode_t));
      //loadmodel->data_leafsurfaces = (int *)Mem_Alloc(loadmodel->mempool, loadmodel->num_leafsurfaces * sizeof(int));
      loadmodel->brush.data_leafsurfaces = loadmodel->sortedmodelsurfaces;
      VectorCopy(loadmodel->normalmins, loadmodel->brush.data_leafs->mins);
      VectorCopy(loadmodel->normalmaxs, loadmodel->brush.data_leafs->maxs);
      loadmodel->brush.data_leafs->combinedsupercontents = 0; // FIXME?
      loadmodel->brush.data_leafs->clusterindex = 0;
      loadmodel->brush.data_leafs->areaindex = 0;
      loadmodel->brush.data_leafs->numleafsurfaces = loadmodel->brush.num_leafsurfaces;
      loadmodel->brush.data_leafs->firstleafsurface = loadmodel->brush.data_leafsurfaces;
      loadmodel->brush.data_leafs->numleafbrushes = 0;
      loadmodel->brush.data_leafs->firstleafbrush = NULL;
      loadmodel->brush.supportwateralpha = true;

      if (loadmodel->brush.numsubmodels)
            loadmodel->brush.submodels = (dp_model_t **)Mem_Alloc(loadmodel->mempool, loadmodel->brush.numsubmodels * sizeof(dp_model_t *));

      mod = loadmodel;
      for (i = 0;i < loadmodel->brush.numsubmodels;i++)
      {
            if (i > 0)
            {
                  char name[10];
                  // duplicate the basic information
                  dpsnprintf(name, sizeof(name), "*%i", i);
                  mod = Mod_FindName(name, loadmodel->name);
                  // copy the base model to this one
                  *mod = *loadmodel;
                  // rename the clone back to its proper name
                  strlcpy(mod->name, name, sizeof(mod->name));
                  mod->brush.parentmodel = loadmodel;
                  // textures and memory belong to the main model
                  mod->texturepool = NULL;
                  mod->mempool = NULL;
                  mod->brush.GetPVS = NULL;
                  mod->brush.FatPVS = NULL;
                  mod->brush.BoxTouchingPVS = NULL;
                  mod->brush.BoxTouchingLeafPVS = NULL;
                  mod->brush.BoxTouchingVisibleLeafs = NULL;
                  mod->brush.FindBoxClusters = NULL;
                  mod->brush.LightPoint = NULL;
                  mod->brush.AmbientSoundLevelsForPoint = NULL;
            }
            mod->brush.submodel = i;
            if (loadmodel->brush.submodels)
                  loadmodel->brush.submodels[i] = mod;

            // make the model surface list (used by shadowing/lighting)
            mod->firstmodelsurface = submodelfirstsurface[i];
            mod->nummodelsurfaces = submodelfirstsurface[i+1] - submodelfirstsurface[i];
            mod->firstmodelbrush = 0;
            mod->nummodelbrushes = 0;
            mod->sortedmodelsurfaces = loadmodel->sortedmodelsurfaces + mod->firstmodelsurface;
            Mod_MakeSortedSurfaces(mod);

            VectorClear(mod->normalmins);
            VectorClear(mod->normalmaxs);
            l = false;
            for (j = 0;j < mod->nummodelsurfaces;j++)
            {
                  const msurface_t *surface = mod->data_surfaces + j + mod->firstmodelsurface;
                  const float *v = mod->surfmesh.data_vertex3f + 3 * surface->num_firstvertex;
                  int k;
                  if (!surface->num_vertices)
                        continue;
                  if (!l)
                  {
                        l = true;
                        VectorCopy(v, mod->normalmins);
                        VectorCopy(v, mod->normalmaxs);
                  }
                  for (k = 0;k < surface->num_vertices;k++, v += 3)
                  {
                        mod->normalmins[0] = min(mod->normalmins[0], v[0]);
                        mod->normalmins[1] = min(mod->normalmins[1], v[1]);
                        mod->normalmins[2] = min(mod->normalmins[2], v[2]);
                        mod->normalmaxs[0] = max(mod->normalmaxs[0], v[0]);
                        mod->normalmaxs[1] = max(mod->normalmaxs[1], v[1]);
                        mod->normalmaxs[2] = max(mod->normalmaxs[2], v[2]);
                  }
            }
            corner[0] = max(fabs(mod->normalmins[0]), fabs(mod->normalmaxs[0]));
            corner[1] = max(fabs(mod->normalmins[1]), fabs(mod->normalmaxs[1]));
            corner[2] = max(fabs(mod->normalmins[2]), fabs(mod->normalmaxs[2]));
            modelradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]+corner[2]*corner[2]);
            yawradius = sqrt(corner[0]*corner[0]+corner[1]*corner[1]);
            mod->rotatedmins[0] = mod->rotatedmins[1] = mod->rotatedmins[2] = -modelradius;
            mod->rotatedmaxs[0] = mod->rotatedmaxs[1] = mod->rotatedmaxs[2] = modelradius;
            mod->yawmaxs[0] = mod->yawmaxs[1] = yawradius;
            mod->yawmins[0] = mod->yawmins[1] = -yawradius;
            mod->yawmins[2] = mod->normalmins[2];
            mod->yawmaxs[2] = mod->normalmaxs[2];
            mod->radius = modelradius;
            mod->radius2 = modelradius * modelradius;

            // this gets altered below if sky or water is used
            mod->DrawSky = NULL;
            mod->DrawAddWaterPlanes = NULL;

            for (j = 0;j < mod->nummodelsurfaces;j++)
                  if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & MATERIALFLAG_SKY)
                        break;
            if (j < mod->nummodelsurfaces)
                  mod->DrawSky = R_Q1BSP_DrawSky;

            for (j = 0;j < mod->nummodelsurfaces;j++)
                  if (mod->data_surfaces[j + mod->firstmodelsurface].texture->basematerialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA))
                        break;
            if (j < mod->nummodelsurfaces)
                  mod->DrawAddWaterPlanes = R_Q1BSP_DrawAddWaterPlanes;

            Mod_MakeCollisionBIH(mod, true, &mod->collision_bih);
            mod->render_bih = mod->collision_bih;

            // generate VBOs and other shared data before cloning submodels
            if (i == 0)
                  Mod_BuildVBOs();
      }
      mod = loadmodel;
      Mem_Free(submodelfirstsurface);

      Con_DPrintf("Stats for obj model \"%s\": %i faces, %i nodes, %i leafs, %i clusters, %i clusterportals, mesh: %i vertices, %i triangles, %i surfaces\n", loadmodel->name, loadmodel->num_surfaces, loadmodel->brush.num_nodes, loadmodel->brush.num_leafs, mod->brush.num_pvsclusters, loadmodel->brush.num_portals, loadmodel->surfmesh.num_vertices, loadmodel->surfmesh.num_triangles, loadmodel->num_surfaces);
}

qboolean Mod_CanSeeBox_Trace(int numsamples, float t, dp_model_t *model, vec3_t eye, vec3_t minsX, vec3_t maxsX)
{
      // we already have done PVS culling at this point...
      // so we don't need to do it again.

      int i;
      vec3_t testorigin, mins, maxs;

      testorigin[0] = (minsX[0] + maxsX[0]) * 0.5;
      testorigin[1] = (minsX[1] + maxsX[1]) * 0.5;
      testorigin[2] = (minsX[2] + maxsX[2]) * 0.5;

      if(model->brush.TraceLineOfSight(model, eye, testorigin))
            return 1;

      // expand the box a little
      mins[0] = (t+1) * minsX[0] - t * maxsX[0];
      maxs[0] = (t+1) * maxsX[0] - t * minsX[0];
      mins[1] = (t+1) * minsX[1] - t * maxsX[1];
      maxs[1] = (t+1) * maxsX[1] - t * minsX[1];
      mins[2] = (t+1) * minsX[2] - t * maxsX[2];
      maxs[2] = (t+1) * maxsX[2] - t * minsX[2];

      for(i = 0; i != numsamples; ++i)
      {
            testorigin[0] = lhrandom(mins[0], maxs[0]);
            testorigin[1] = lhrandom(mins[1], maxs[1]);
            testorigin[2] = lhrandom(mins[2], maxs[2]);

            if(model->brush.TraceLineOfSight(model, eye, testorigin))
                  return 1;
      }

      return 0;
}


Generated by  Doxygen 1.6.0   Back to index