Logo Search packages:      
Sourcecode: darkplaces version File versions  Download package

gl_rsurf.c

/*
Copyright (C) 1996-1997 Id Software, Inc.

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.

*/
// r_surf.c: surface-related refresh code

#include "quakedef.h"
#include "r_shadow.h"
#include "portals.h"
#include "csprogs.h"

cvar_t r_ambient = {0, "r_ambient", "0", "brightens map, value is 0-128"};
cvar_t r_lockpvs = {0, "r_lockpvs", "0", "disables pvs switching, allows you to walk around and inspect what is visible from a given location in the map (anything not visible from your current location will not be drawn)"};
cvar_t r_lockvisibility = {0, "r_lockvisibility", "0", "disables visibility updates, allows you to walk around and inspect what is visible from a given viewpoint in the map (anything offscreen at the moment this is enabled will not be drawn)"};
cvar_t r_useportalculling = {0, "r_useportalculling", "2", "improve framerate with r_novis 1 by using portal culling - still not as good as compiled visibility data in the map, but it helps (a value of 2 forces use of this even with vis data, which improves framerates in maps without too much complexity, but hurts in extremely complex maps, which is why 2 is not the default mode)"};
cvar_t r_usesurfaceculling = {0, "r_usesurfaceculling", "1", "improve framerate by culling offscreen surfaces"};
cvar_t r_q3bsp_renderskydepth = {0, "r_q3bsp_renderskydepth", "0", "draws sky depth masking in q3 maps (as in q1 maps), this means for example that sky polygons can hide other things"};

/*
===============
R_BuildLightMap

Combine and scale multiple lightmaps into the 8.8 format in blocklights
===============
*/
void R_BuildLightMap (const entity_render_t *ent, msurface_t *surface)
{
      int smax, tmax, i, size, size3, maps, l;
      int *bl, scale;
      unsigned char *lightmap, *out, *stain;
      dp_model_t *model = ent->model;
      int *intblocklights;
      unsigned char *templight;

      smax = (surface->lightmapinfo->extents[0]>>4)+1;
      tmax = (surface->lightmapinfo->extents[1]>>4)+1;
      size = smax*tmax;
      size3 = size*3;

      r_refdef.stats.lightmapupdatepixels += size;
      r_refdef.stats.lightmapupdates++;

      if (cl.buildlightmapmemorysize < size*sizeof(int[3]))
      {
            cl.buildlightmapmemorysize = size*sizeof(int[3]);
            if (cl.buildlightmapmemory)
                  Mem_Free(cl.buildlightmapmemory);
            cl.buildlightmapmemory = (unsigned char *) Mem_Alloc(cls.levelmempool, cl.buildlightmapmemorysize);
      }

      // these both point at the same buffer, templight is only used for final
      // processing and can replace the intblocklights data as it goes
      intblocklights = (int *)cl.buildlightmapmemory;
      templight = (unsigned char *)cl.buildlightmapmemory;

      // update cached lighting info
      model->brushq1.lightmapupdateflags[surface - model->data_surfaces] = false;

      lightmap = surface->lightmapinfo->samples;

// set to full bright if no light data
      bl = intblocklights;
      if (!model->brushq1.lightdata)
      {
            for (i = 0;i < size3;i++)
                  bl[i] = 128*256;
      }
      else
      {
// clear to no light
            memset(bl, 0, size3*sizeof(*bl));

// add all the lightmaps
            if (lightmap)
                  for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3)
                        for (scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size3;i++)
                              bl[i] += lightmap[i] * scale;
      }

      stain = surface->lightmapinfo->stainsamples;
      bl = intblocklights;
      out = templight;
      // the >> 16 shift adjusts down 8 bits to account for the stainmap
      // scaling, and remaps the 0-65536 (2x overbright) to 0-256, it will
      // be doubled during rendering to achieve 2x overbright
      // (0 = 0.0, 128 = 1.0, 256 = 2.0)
      if (stain)
      {
            for (i = 0;i < size;i++, bl += 3, stain += 3, out += 4)
            {
                  l = (bl[0] * stain[0]) >> 16;out[2] = min(l, 255);
                  l = (bl[1] * stain[1]) >> 16;out[1] = min(l, 255);
                  l = (bl[2] * stain[2]) >> 16;out[0] = min(l, 255);
                  out[3] = 255;
            }
      }
      else
      {
            for (i = 0;i < size;i++, bl += 3, out += 4)
            {
                  l = bl[0] >> 8;out[2] = min(l, 255);
                  l = bl[1] >> 8;out[1] = min(l, 255);
                  l = bl[2] >> 8;out[0] = min(l, 255);
                  out[3] = 255;
            }
      }

      R_UpdateTexture(surface->lightmaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], 0, smax, tmax, 1);

      // update the surface's deluxemap if it has one
      if (surface->deluxemaptexture != r_texture_blanknormalmap)
      {
            vec3_t n;
            unsigned char *normalmap = surface->lightmapinfo->nmapsamples;
            lightmap = surface->lightmapinfo->samples;
            // clear to no normalmap
            bl = intblocklights;
            memset(bl, 0, size3*sizeof(*bl));
            // add all the normalmaps
            if (lightmap && normalmap)
            {
                  for (maps = 0;maps < MAXLIGHTMAPS && surface->lightmapinfo->styles[maps] != 255;maps++, lightmap += size3, normalmap += size3)
                  {
                        for (scale = r_refdef.scene.lightstylevalue[surface->lightmapinfo->styles[maps]], i = 0;i < size;i++)
                        {
                              // add the normalmap with weighting proportional to the style's lightmap intensity
                              l = (int)(VectorLength(lightmap + i*3) * scale);
                              bl[i*3+0] += ((int)normalmap[i*3+0] - 128) * l;
                              bl[i*3+1] += ((int)normalmap[i*3+1] - 128) * l;
                              bl[i*3+2] += ((int)normalmap[i*3+2] - 128) * l;
                        }
                  }
            }
            bl = intblocklights;
            out = templight;
            // we simply renormalize the weighted normals to get a valid deluxemap
            for (i = 0;i < size;i++, bl += 3, out += 4)
            {
                  VectorCopy(bl, n);
                  VectorNormalize(n);
                  l = (int)(n[0] * 128 + 128);out[2] = bound(0, l, 255);
                  l = (int)(n[1] * 128 + 128);out[1] = bound(0, l, 255);
                  l = (int)(n[2] * 128 + 128);out[0] = bound(0, l, 255);
                  out[3] = 255;
            }
            R_UpdateTexture(surface->deluxemaptexture, templight, surface->lightmapinfo->lightmaporigin[0], surface->lightmapinfo->lightmaporigin[1], 0, smax, tmax, 1);
      }
}

void R_StainNode (mnode_t *node, dp_model_t *model, const vec3_t origin, float radius, const float fcolor[8])
{
      float ndist, a, ratio, maxdist, maxdist2, maxdist3, invradius, sdtable[256], td, dist2;
      msurface_t *surface, *endsurface;
      int i, s, t, smax, tmax, smax3, impacts, impactt, stained;
      unsigned char *bl;
      vec3_t impact;

      maxdist = radius * radius;
      invradius = 1.0f / radius;

loc0:
      if (!node->plane)
            return;
      ndist = PlaneDiff(origin, node->plane);
      if (ndist > radius)
      {
            node = node->children[0];
            goto loc0;
      }
      if (ndist < -radius)
      {
            node = node->children[1];
            goto loc0;
      }

      dist2 = ndist * ndist;
      maxdist3 = maxdist - dist2;

      if (node->plane->type < 3)
      {
            VectorCopy(origin, impact);
            impact[node->plane->type] -= ndist;
      }
      else
      {
            impact[0] = origin[0] - node->plane->normal[0] * ndist;
            impact[1] = origin[1] - node->plane->normal[1] * ndist;
            impact[2] = origin[2] - node->plane->normal[2] * ndist;
      }

      for (surface = model->data_surfaces + node->firstsurface, endsurface = surface + node->numsurfaces;surface < endsurface;surface++)
      {
            if (surface->lightmapinfo->stainsamples)
            {
                  smax = (surface->lightmapinfo->extents[0] >> 4) + 1;
                  tmax = (surface->lightmapinfo->extents[1] >> 4) + 1;

                  impacts = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[0]) + surface->lightmapinfo->texinfo->vecs[0][3] - surface->lightmapinfo->texturemins[0]);
                  impactt = (int)(DotProduct (impact, surface->lightmapinfo->texinfo->vecs[1]) + surface->lightmapinfo->texinfo->vecs[1][3] - surface->lightmapinfo->texturemins[1]);

                  s = bound(0, impacts, smax * 16) - impacts;
                  t = bound(0, impactt, tmax * 16) - impactt;
                  i = (int)(s * s + t * t + dist2);
                  if ((i > maxdist) || (smax > (int)(sizeof(sdtable)/sizeof(sdtable[0])))) // smax overflow fix from Andreas Dehmel
                        continue;

                  // reduce calculations
                  for (s = 0, i = impacts; s < smax; s++, i -= 16)
                        sdtable[s] = i * i + dist2;

                  bl = surface->lightmapinfo->stainsamples;
                  smax3 = smax * 3;
                  stained = false;

                  i = impactt;
                  for (t = 0;t < tmax;t++, i -= 16)
                  {
                        td = i * i;
                        // make sure some part of it is visible on this line
                        if (td < maxdist3)
                        {
                              maxdist2 = maxdist - td;
                              for (s = 0;s < smax;s++)
                              {
                                    if (sdtable[s] < maxdist2)
                                    {
                                          ratio = lhrandom(0.0f, 1.0f);
                                          a = (fcolor[3] + ratio * fcolor[7]) * (1.0f - sqrt(sdtable[s] + td) * invradius);
                                          if (a >= (1.0f / 64.0f))
                                          {
                                                if (a > 1)
                                                      a = 1;
                                                bl[0] = (unsigned char) ((float) bl[0] + a * ((fcolor[0] + ratio * fcolor[4]) - (float) bl[0]));
                                                bl[1] = (unsigned char) ((float) bl[1] + a * ((fcolor[1] + ratio * fcolor[5]) - (float) bl[1]));
                                                bl[2] = (unsigned char) ((float) bl[2] + a * ((fcolor[2] + ratio * fcolor[6]) - (float) bl[2]));
                                                stained = true;
                                          }
                                    }
                                    bl += 3;
                              }
                        }
                        else // skip line
                              bl += smax3;
                  }
                  // force lightmap upload
                  if (stained)
                        model->brushq1.lightmapupdateflags[surface - model->data_surfaces] = true;
            }
      }

      if (node->children[0]->plane)
      {
            if (node->children[1]->plane)
            {
                  R_StainNode(node->children[0], model, origin, radius, fcolor);
                  node = node->children[1];
                  goto loc0;
            }
            else
            {
                  node = node->children[0];
                  goto loc0;
            }
      }
      else if (node->children[1]->plane)
      {
            node = node->children[1];
            goto loc0;
      }
}

void R_Stain (const vec3_t origin, float radius, int cr1, int cg1, int cb1, int ca1, int cr2, int cg2, int cb2, int ca2)
{
      int n;
      float fcolor[8];
      entity_render_t *ent;
      dp_model_t *model;
      vec3_t org;
      if (r_refdef.scene.worldmodel == NULL || !r_refdef.scene.worldmodel->brush.data_nodes || !r_refdef.scene.worldmodel->brushq1.lightdata)
            return;
      fcolor[0] = cr1;
      fcolor[1] = cg1;
      fcolor[2] = cb1;
      fcolor[3] = ca1 * (1.0f / 64.0f);
      fcolor[4] = cr2 - cr1;
      fcolor[5] = cg2 - cg1;
      fcolor[6] = cb2 - cb1;
      fcolor[7] = (ca2 - ca1) * (1.0f / 64.0f);

      R_StainNode(r_refdef.scene.worldmodel->brush.data_nodes + r_refdef.scene.worldmodel->brushq1.hulls[0].firstclipnode, r_refdef.scene.worldmodel, origin, radius, fcolor);

      // look for embedded bmodels
      for (n = 0;n < cl.num_brushmodel_entities;n++)
      {
            ent = &cl.entities[cl.brushmodel_entities[n]].render;
            model = ent->model;
            if (model && model->name[0] == '*')
            {
                  if (model->brush.data_nodes)
                  {
                        Matrix4x4_Transform(&ent->inversematrix, origin, org);
                        R_StainNode(model->brush.data_nodes + model->brushq1.hulls[0].firstclipnode, model, org, radius, fcolor);
                  }
            }
      }
}


/*
=============================================================

      BRUSH MODELS

=============================================================
*/

static void R_DrawPortal_Callback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
      // due to the hacky nature of this function's parameters, this is never
      // called with a batch, so numsurfaces is always 1, and the surfacelist
      // contains only a leaf number for coloring purposes
      const mportal_t *portal = (mportal_t *)ent;
      qboolean isvis;
      int i, numpoints;
      float *v;
      float vertex3f[POLYGONELEMENTS_MAXPOINTS*3];
      CHECKGLERROR
      GL_BlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
      GL_DepthMask(false);
      GL_DepthRange(0, 1);
      GL_PolygonOffset(r_refdef.polygonfactor, r_refdef.polygonoffset);
      GL_DepthTest(true);
      GL_CullFace(GL_NONE);
      R_EntityMatrix(&identitymatrix);

      numpoints = min(portal->numpoints, POLYGONELEMENTS_MAXPOINTS);

//    R_Mesh_ResetTextureState();

      isvis = (portal->here->clusterindex >= 0 && portal->past->clusterindex >= 0 && portal->here->clusterindex != portal->past->clusterindex);

      i = surfacelist[0] >> 1;
      GL_Color(((i & 0x0007) >> 0) * (1.0f / 7.0f) * r_refdef.view.colorscale,
                   ((i & 0x0038) >> 3) * (1.0f / 7.0f) * r_refdef.view.colorscale,
                   ((i & 0x01C0) >> 6) * (1.0f / 7.0f) * r_refdef.view.colorscale,
                   isvis ? 0.125f : 0.03125f);
      for (i = 0, v = vertex3f;i < numpoints;i++, v += 3)
            VectorCopy(portal->points[i].position, v);
      R_Mesh_PrepareVertices_Generic_Arrays(numpoints, vertex3f, NULL, NULL);
      R_SetupShader_Generic(NULL, NULL, GL_MODULATE, 1, false);
      R_Mesh_Draw(0, numpoints, 0, numpoints - 2, polygonelement3i, NULL, 0, polygonelement3s, NULL, 0);
}

// LordHavoc: this is just a nice debugging tool, very slow
void R_DrawPortals(void)
{
      int i, leafnum;
      mportal_t *portal;
      float center[3], f;
      dp_model_t *model = r_refdef.scene.worldmodel;
      if (model == NULL)
            return;
      for (leafnum = 0;leafnum < r_refdef.scene.worldmodel->brush.num_leafs;leafnum++)
      {
            if (r_refdef.viewcache.world_leafvisible[leafnum])
            {
                  //for (portalnum = 0, portal = model->brush.data_portals;portalnum < model->brush.num_portals;portalnum++, portal++)
                  for (portal = r_refdef.scene.worldmodel->brush.data_leafs[leafnum].portals;portal;portal = portal->next)
                  {
                        if (portal->numpoints <= POLYGONELEMENTS_MAXPOINTS)
                        if (!R_CullBox(portal->mins, portal->maxs))
                        {
                              VectorClear(center);
                              for (i = 0;i < portal->numpoints;i++)
                                    VectorAdd(center, portal->points[i].position, center);
                              f = ixtable[portal->numpoints];
                              VectorScale(center, f, center);
                              R_MeshQueue_AddTransparent(center, R_DrawPortal_Callback, (entity_render_t *)portal, leafnum, rsurface.rtlight);
                        }
                  }
            }
      }
}

void R_View_WorldVisibility(qboolean forcenovis)
{
      int i, j, *mark;
      mleaf_t *leaf;
      mleaf_t *viewleaf;
      dp_model_t *model = r_refdef.scene.worldmodel;

      if (!model)
            return;

      if (r_refdef.view.usecustompvs)
      {
            // clear the visible surface and leaf flags arrays
            memset(r_refdef.viewcache.world_surfacevisible, 0, model->num_surfaces);
            memset(r_refdef.viewcache.world_leafvisible, 0, model->brush.num_leafs);
            r_refdef.viewcache.world_novis = false;

            // simply cull each marked leaf to the frustum (view pyramid)
            for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++)
            {
                  // if leaf is in current pvs and on the screen, mark its surfaces
                  if (CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs))
                  {
                        r_refdef.stats.world_leafs++;
                        r_refdef.viewcache.world_leafvisible[j] = true;
                        if (leaf->numleafsurfaces)
                              for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
                                    r_refdef.viewcache.world_surfacevisible[*mark] = true;
                  }
            }
            return;
      }

      // if possible find the leaf the view origin is in
      viewleaf = model->brush.PointInLeaf ? model->brush.PointInLeaf(model, r_refdef.view.origin) : NULL;
      // if possible fetch the visible cluster bits
      if (!r_lockpvs.integer && model->brush.FatPVS)
            model->brush.FatPVS(model, r_refdef.view.origin, 2, r_refdef.viewcache.world_pvsbits, (r_refdef.viewcache.world_numclusters+7)>>3, false);

      if (!r_lockvisibility.integer)
      {
            // clear the visible surface and leaf flags arrays
            memset(r_refdef.viewcache.world_surfacevisible, 0, model->num_surfaces);
            memset(r_refdef.viewcache.world_leafvisible, 0, model->brush.num_leafs);

            r_refdef.viewcache.world_novis = false;

            // if floating around in the void (no pvs data available, and no
            // portals available), simply use all on-screen leafs.
            if (!viewleaf || viewleaf->clusterindex < 0 || forcenovis || r_trippy.integer)
            {
                  // no visibility method: (used when floating around in the void)
                  // simply cull each leaf to the frustum (view pyramid)
                  // similar to quake's RecursiveWorldNode but without cache misses
                  r_refdef.viewcache.world_novis = true;
                  for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++)
                  {
                        if (leaf->clusterindex < 0)
                              continue;
                        // if leaf is in current pvs and on the screen, mark its surfaces
                        if (!R_CullBox(leaf->mins, leaf->maxs))
                        {
                              r_refdef.stats.world_leafs++;
                              r_refdef.viewcache.world_leafvisible[j] = true;
                              if (leaf->numleafsurfaces)
                                    for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
                                          r_refdef.viewcache.world_surfacevisible[*mark] = true;
                        }
                  }
            }
            // just check if each leaf in the PVS is on screen
            // (unless portal culling is enabled)
            else if (!model->brush.data_portals || r_useportalculling.integer < 1 || (r_useportalculling.integer < 2 && !r_novis.integer))
            {
                  // pvs method:
                  // simply check if each leaf is in the Potentially Visible Set,
                  // and cull to frustum (view pyramid)
                  // similar to quake's RecursiveWorldNode but without cache misses
                  for (j = 0, leaf = model->brush.data_leafs;j < model->brush.num_leafs;j++, leaf++)
                  {
                        if (leaf->clusterindex < 0)
                              continue;
                        // if leaf is in current pvs and on the screen, mark its surfaces
                        if (CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, leaf->clusterindex) && !R_CullBox(leaf->mins, leaf->maxs))
                        {
                              r_refdef.stats.world_leafs++;
                              r_refdef.viewcache.world_leafvisible[j] = true;
                              if (leaf->numleafsurfaces)
                                    for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
                                          r_refdef.viewcache.world_surfacevisible[*mark] = true;
                        }
                  }
            }
            // if desired use a recursive portal flow, culling each portal to
            // frustum and checking if the leaf the portal leads to is in the pvs
            else
            {
                  int leafstackpos;
                  mportal_t *p;
                  mleaf_t *leafstack[8192];
                  // simple-frustum portal method:
                  // follows portals leading outward from viewleaf, does not venture
                  // offscreen or into leafs that are not visible, faster than
                  // Quake's RecursiveWorldNode and vastly better in unvised maps,
                  // often culls some surfaces that pvs alone would miss
                  // (such as a room in pvs that is hidden behind a wall, but the
                  //  passage leading to the room is off-screen)
                  leafstack[0] = viewleaf;
                  leafstackpos = 1;
                  while (leafstackpos)
                  {
                        leaf = leafstack[--leafstackpos];
                        if (r_refdef.viewcache.world_leafvisible[leaf - model->brush.data_leafs])
                              continue;
                        if (leaf->clusterindex < 0)
                              continue;
                        r_refdef.stats.world_leafs++;
                        r_refdef.viewcache.world_leafvisible[leaf - model->brush.data_leafs] = true;
                        // mark any surfaces bounding this leaf
                        if (leaf->numleafsurfaces)
                              for (i = 0, mark = leaf->firstleafsurface;i < leaf->numleafsurfaces;i++, mark++)
                                    r_refdef.viewcache.world_surfacevisible[*mark] = true;
                        // follow portals into other leafs
                        // the checks are:
                        // if viewer is behind portal (portal faces outward into the scene)
                        // and the portal polygon's bounding box is on the screen
                        // and the leaf has not been visited yet
                        // and the leaf is visible in the pvs
                        // (the first two checks won't cause as many cache misses as the leaf checks)
                        for (p = leaf->portals;p;p = p->next)
                        {
                              r_refdef.stats.world_portals++;
                              if (DotProduct(r_refdef.view.origin, p->plane.normal) < (p->plane.dist + 1)
                               && !r_refdef.viewcache.world_leafvisible[p->past - model->brush.data_leafs]
                               && CHECKPVSBIT(r_refdef.viewcache.world_pvsbits, p->past->clusterindex)
                               && !R_CullBox(p->mins, p->maxs)
                               && leafstackpos < (int)(sizeof(leafstack) / sizeof(leafstack[0])))
                                    leafstack[leafstackpos++] = p->past;
                        }
                  }
            }
      }

      if (r_usesurfaceculling.integer)
      {
            int k = model->firstmodelsurface;
            int l = k + model->nummodelsurfaces;
            unsigned char *visible = r_refdef.viewcache.world_surfacevisible;
            msurface_t *surfaces = model->data_surfaces;
            msurface_t *surface;
            for (;k < l;k++)
            {
                  if (visible[k])
                  {
                        surface = surfaces + k;
                        if (R_CullBox(surface->mins, surface->maxs))
                              visible[k] = false;
                  }
            }
}
}

void R_Q1BSP_DrawSky(entity_render_t *ent)
{
      if (ent->model == NULL)
            return;
      if (ent == r_refdef.scene.worldentity)
            R_DrawWorldSurfaces(true, true, false, false, false);
      else
            R_DrawModelSurfaces(ent, true, true, false, false, false);
}

extern void R_Water_AddWaterPlane(msurface_t *surface, int entno);
void R_Q1BSP_DrawAddWaterPlanes(entity_render_t *ent)
{
      int i, j, n, flagsmask;
      dp_model_t *model = ent->model;
      msurface_t *surfaces;
      if (model == NULL)
            return;

      if (ent == r_refdef.scene.worldentity)
            RSurf_ActiveWorldEntity();
      else
            RSurf_ActiveModelEntity(ent, false, false, false);

      surfaces = model->data_surfaces;
      flagsmask = MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA;

      // add visible surfaces to draw list
      if (ent == r_refdef.scene.worldentity)
      {
            for (i = 0;i < model->nummodelsurfaces;i++)
            {
                  j = model->sortedmodelsurfaces[i];
                  if (r_refdef.viewcache.world_surfacevisible[j])
                        if (surfaces[j].texture->basematerialflags & flagsmask)
                              R_Water_AddWaterPlane(surfaces + j, 0);
            }
      }
      else
      {
            if(ent->entitynumber >= MAX_EDICTS) // && CL_VM_TransformView(ent->entitynumber - MAX_EDICTS, NULL, NULL, NULL))
                  n = ent->entitynumber;
            else
                  n = 0;
            for (i = 0;i < model->nummodelsurfaces;i++)
            {
                  j = model->sortedmodelsurfaces[i];
                  if (surfaces[j].texture->basematerialflags & flagsmask)
                        R_Water_AddWaterPlane(surfaces + j, n);
            }
      }
      rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity
}

void R_Q1BSP_Draw(entity_render_t *ent)
{
      dp_model_t *model = ent->model;
      if (model == NULL)
            return;
      if (ent == r_refdef.scene.worldentity)
            R_DrawWorldSurfaces(false, true, false, false, false);
      else
            R_DrawModelSurfaces(ent, false, true, false, false, false);
}

void R_Q1BSP_DrawDepth(entity_render_t *ent)
{
      dp_model_t *model = ent->model;
      if (model == NULL)
            return;
      GL_ColorMask(0,0,0,0);
      GL_Color(1,1,1,1);
      GL_DepthTest(true);
      GL_BlendFunc(GL_ONE, GL_ZERO);
      GL_DepthMask(true);
//    R_Mesh_ResetTextureState();
      R_SetupShader_DepthOrShadow(false);
      if (ent == r_refdef.scene.worldentity)
            R_DrawWorldSurfaces(false, false, true, false, false);
      else
            R_DrawModelSurfaces(ent, false, false, true, false, false);
      GL_ColorMask(r_refdef.view.colormask[0], r_refdef.view.colormask[1], r_refdef.view.colormask[2], 1);
}

void R_Q1BSP_DrawDebug(entity_render_t *ent)
{
      if (ent->model == NULL)
            return;
      if (ent == r_refdef.scene.worldentity)
            R_DrawWorldSurfaces(false, false, false, true, false);
      else
            R_DrawModelSurfaces(ent, false, false, false, true, false);
}

void R_Q1BSP_DrawPrepass(entity_render_t *ent)
{
      dp_model_t *model = ent->model;
      if (model == NULL)
            return;
      if (ent == r_refdef.scene.worldentity)
            R_DrawWorldSurfaces(false, true, false, false, true);
      else
            R_DrawModelSurfaces(ent, false, true, false, false, true);
}

00667 typedef struct r_q1bsp_getlightinfo_s
{
      dp_model_t *model;
      vec3_t relativelightorigin;
      float lightradius;
      int *outleaflist;
      unsigned char *outleafpvs;
      int outnumleafs;
      unsigned char *visitingleafpvs;
      int *outsurfacelist;
      unsigned char *outsurfacepvs;
      unsigned char *tempsurfacepvs;
      unsigned char *outshadowtrispvs;
      unsigned char *outlighttrispvs;
      int outnumsurfaces;
      vec3_t outmins;
      vec3_t outmaxs;
      vec3_t lightmins;
      vec3_t lightmaxs;
      const unsigned char *pvs;
      qboolean svbsp_active;
      qboolean svbsp_insertoccluder;
      int numfrustumplanes;
      const mplane_t *frustumplanes;
}
r_q1bsp_getlightinfo_t;

#define GETLIGHTINFO_MAXNODESTACK 4096

static void R_Q1BSP_RecursiveGetLightInfo_BSP(r_q1bsp_getlightinfo_t *info, qboolean skipsurfaces)
{
      // nodestack
      mnode_t *nodestack[GETLIGHTINFO_MAXNODESTACK];
      int nodestackpos = 0;
      // node processing
      mplane_t *plane;
      mnode_t *node;
      int sides;
      // leaf processing
      mleaf_t *leaf;
      const msurface_t *surface;
      const msurface_t *surfaces = info->model->data_surfaces;
      int numleafsurfaces;
      int leafsurfaceindex;
      int surfaceindex;
      int triangleindex, t;
      int currentmaterialflags;
      qboolean castshadow;
      const int *e;
      const vec_t *v[3];
      float v2[3][3];
      qboolean insidebox;
      qboolean frontsidecasting = r_shadow_frontsidecasting.integer != 0;
      qboolean svbspactive = info->svbsp_active;
      qboolean svbspinsertoccluder = info->svbsp_insertoccluder;
      const int *leafsurfaceindices;
      qboolean addedtris;
      int i;
      mportal_t *portal;
      static float points[128][3];
      // push the root node onto our nodestack
      nodestack[nodestackpos++] = info->model->brush.data_nodes;
      // we'll be done when the nodestack is empty
      while (nodestackpos)
      {
            // get a node from the stack to process
            node = nodestack[--nodestackpos];
            // is it a node or a leaf?
            plane = node->plane;
            if (plane)
            {
                  // node
#if 0
                  if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs))
                        continue;
#endif
#if 0
                  if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(node->mins, node->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes))
                        continue;
#endif
                  // axial planes can be processed much more quickly
                  if (plane->type < 3)
                  {
                        // axial plane
                        if (info->lightmins[plane->type] > plane->dist)
                              nodestack[nodestackpos++] = node->children[0];
                        else if (info->lightmaxs[plane->type] < plane->dist)
                              nodestack[nodestackpos++] = node->children[1];
                        else
                        {
                              // recurse front side first because the svbsp building prefers it
                              if (info->relativelightorigin[plane->type] >= plane->dist)
                              {
                                    if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
                                          nodestack[nodestackpos++] = node->children[0];
                                    nodestack[nodestackpos++] = node->children[1];
                              }
                              else
                              {
                                    if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
                                          nodestack[nodestackpos++] = node->children[1];
                                    nodestack[nodestackpos++] = node->children[0];
                              }
                        }
                  }
                  else
                  {
                        // sloped plane
                        sides = BoxOnPlaneSide(info->lightmins, info->lightmaxs, plane);
                        switch (sides)
                        {
                        default:
                              continue; // ERROR: NAN bounding box!
                        case 1:
                              nodestack[nodestackpos++] = node->children[0];
                              break;
                        case 2:
                              nodestack[nodestackpos++] = node->children[1];
                              break;
                        case 3:
                              // recurse front side first because the svbsp building prefers it
                              if (PlaneDist(info->relativelightorigin, plane) >= 0)
                              {
                                    if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
                                          nodestack[nodestackpos++] = node->children[0];
                                    nodestack[nodestackpos++] = node->children[1];
                              }
                              else
                              {
                                    if (nodestackpos < GETLIGHTINFO_MAXNODESTACK)
                                          nodestack[nodestackpos++] = node->children[1];
                                    nodestack[nodestackpos++] = node->children[0];
                              }
                              break;
                        }
                  }
            }
            else
            {
                  // leaf
                  leaf = (mleaf_t *)node;
#if 1
                  if (r_shadow_frontsidecasting.integer && info->pvs != NULL && !CHECKPVSBIT(info->pvs, leaf->clusterindex))
                        continue;
#endif
#if 1
                  if (!BoxesOverlap(info->lightmins, info->lightmaxs, leaf->mins, leaf->maxs))
                        continue;
#endif
#if 1
                  if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(leaf->mins, leaf->maxs, info->numfrustumplanes, info->frustumplanes))
                        continue;
#endif

                  if (svbspactive)
                  {
                        // we can occlusion test the leaf by checking if all of its portals
                        // are occluded (unless the light is in this leaf - but that was
                        // already handled by the caller)
                        for (portal = leaf->portals;portal;portal = portal->next)
                        {
                              for (i = 0;i < portal->numpoints;i++)
                                    VectorCopy(portal->points[i].position, points[i]);
                              if (SVBSP_AddPolygon(&r_svbsp, portal->numpoints, points[0], false, NULL, NULL, 0) & 2)
                                    break;
                        }
                        if (leaf->portals && portal == NULL)
                              continue; // no portals of this leaf visible
                  }

                  // add this leaf to the reduced light bounds
                  info->outmins[0] = min(info->outmins[0], leaf->mins[0]);
                  info->outmins[1] = min(info->outmins[1], leaf->mins[1]);
                  info->outmins[2] = min(info->outmins[2], leaf->mins[2]);
                  info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]);
                  info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]);
                  info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]);

                  // mark this leaf as being visible to the light
                  if (info->outleafpvs)
                  {
                        int leafindex = leaf - info->model->brush.data_leafs;
                        if (!CHECKPVSBIT(info->outleafpvs, leafindex))
                        {
                              SETPVSBIT(info->outleafpvs, leafindex);
                              info->outleaflist[info->outnumleafs++] = leafindex;
                        }
                  }

                  // when using BIH, we skip the surfaces here
                  if (skipsurfaces)
                        continue;

                  // iterate the surfaces linked by this leaf and check their triangles
                  leafsurfaceindices = leaf->firstleafsurface;
                  numleafsurfaces = leaf->numleafsurfaces;
                  if (svbspinsertoccluder)
                  {
                        for (leafsurfaceindex = 0;leafsurfaceindex < numleafsurfaces;leafsurfaceindex++)
                        {
                              surfaceindex = leafsurfaceindices[leafsurfaceindex];
                              if (CHECKPVSBIT(info->outsurfacepvs, surfaceindex))
                                    continue;
                              SETPVSBIT(info->outsurfacepvs, surfaceindex);
                              surface = surfaces + surfaceindex;
                              if (!BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs))
                                    continue;
                              currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags;
                              castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW);
                              if (!castshadow)
                                    continue;
                              insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs);
                              for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3)
                              {
                                    v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3;
                                    v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3;
                                    v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3;
                                    VectorCopy(v[0], v2[0]);
                                    VectorCopy(v[1], v2[1]);
                                    VectorCopy(v[2], v2[2]);
                                    if (insidebox || TriangleOverlapsBox(v2[0], v2[1], v2[2], info->lightmins, info->lightmaxs))
                                          SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0);
                              }
                        }
                  }
                  else
                  {
                        for (leafsurfaceindex = 0;leafsurfaceindex < numleafsurfaces;leafsurfaceindex++)
                        {
                              surfaceindex = leafsurfaceindices[leafsurfaceindex];
                              if (CHECKPVSBIT(info->outsurfacepvs, surfaceindex))
                                    continue;
                              SETPVSBIT(info->outsurfacepvs, surfaceindex);
                              surface = surfaces + surfaceindex;
                              if (!BoxesOverlap(info->lightmins, info->lightmaxs, surface->mins, surface->maxs))
                                    continue;
                              addedtris = false;
                              currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags;
                              castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW);
                              insidebox = BoxInsideBox(surface->mins, surface->maxs, info->lightmins, info->lightmaxs);
                              for (triangleindex = 0, t = surface->num_firstshadowmeshtriangle, e = info->model->brush.shadowmesh->element3i + t * 3;triangleindex < surface->num_triangles;triangleindex++, t++, e += 3)
                              {
                                    v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3;
                                    v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3;
                                    v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3;
                                    VectorCopy(v[0], v2[0]);
                                    VectorCopy(v[1], v2[1]);
                                    VectorCopy(v[2], v2[2]);
                                    if (!insidebox && !TriangleOverlapsBox(v2[0], v2[1], v2[2], info->lightmins, info->lightmaxs))
                                          continue;
                                    if (svbspactive && !(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2))
                                          continue;
                                    // we don't omit triangles from lighting even if they are
                                    // backfacing, because when using shadowmapping they are often
                                    // not fully occluded on the horizon of an edge
                                    SETPVSBIT(info->outlighttrispvs, t);
                                    addedtris = true;
                                    if (castshadow)
                                    {
                                          if (currentmaterialflags & MATERIALFLAG_NOCULLFACE)
                                          {
                                                // if the material is double sided we
                                                // can't cull by direction
                                                SETPVSBIT(info->outshadowtrispvs, t);
                                          }
                                          else if (frontsidecasting)
                                          {
                                                // front side casting occludes backfaces,
                                                // so they are completely useless as both
                                                // casters and lit polygons
                                                if (PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
                                                      SETPVSBIT(info->outshadowtrispvs, t);
                                          }
                                          else
                                          {
                                                // back side casting does not occlude
                                                // anything so we can't cull lit polygons
                                                if (!PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
                                                      SETPVSBIT(info->outshadowtrispvs, t);
                                          }
                                    }
                              }
                              if (addedtris)
                                    info->outsurfacelist[info->outnumsurfaces++] = surfaceindex;
                        }
                  }
            }
      }
}

static void R_Q1BSP_RecursiveGetLightInfo_BIH(r_q1bsp_getlightinfo_t *info, const bih_t *bih)
{
      bih_leaf_t *leaf;
      bih_node_t *node;
      int nodenum;
      int axis;
      int surfaceindex;
      int t;
      int nodeleafindex;
      int currentmaterialflags;
      qboolean castshadow;
      msurface_t *surface;
      const int *e;
      const vec_t *v[3];
      float v2[3][3];
      int nodestack[GETLIGHTINFO_MAXNODESTACK];
      int nodestackpos = 0;
      // note: because the BSP leafs are not in the BIH tree, the _BSP function
      // must be called to mark leafs visible for entity culling...
      // we start at the root node
      nodestack[nodestackpos++] = bih->rootnode;
      // we'll be done when the stack is empty
      while (nodestackpos)
      {
            // pop one off the stack to process
            nodenum = nodestack[--nodestackpos];
            // node
            node = bih->nodes + nodenum;
            if (node->type == BIH_UNORDERED)
            {
                  for (nodeleafindex = 0;nodeleafindex < BIH_MAXUNORDEREDCHILDREN && node->children[nodeleafindex] >= 0;nodeleafindex++)
                  {
                        leaf = bih->leafs + node->children[nodeleafindex];
                        if (leaf->type != BIH_RENDERTRIANGLE)
                              continue;
#if 1
                        if (!BoxesOverlap(info->lightmins, info->lightmaxs, leaf->mins, leaf->maxs))
                              continue;
#endif
#if 1
                        if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(leaf->mins, leaf->maxs, info->numfrustumplanes, info->frustumplanes))
                              continue;
#endif
                        surfaceindex = leaf->surfaceindex;
                        surface = info->model->data_surfaces + surfaceindex;
                        currentmaterialflags = R_GetCurrentTexture(surface->texture)->currentmaterialflags;
                        castshadow = !(currentmaterialflags & MATERIALFLAG_NOSHADOW);
                        t = leaf->itemindex + surface->num_firstshadowmeshtriangle - surface->num_firsttriangle;
                        e = info->model->brush.shadowmesh->element3i + t * 3;
                        v[0] = info->model->brush.shadowmesh->vertex3f + e[0] * 3;
                        v[1] = info->model->brush.shadowmesh->vertex3f + e[1] * 3;
                        v[2] = info->model->brush.shadowmesh->vertex3f + e[2] * 3;
                        VectorCopy(v[0], v2[0]);
                        VectorCopy(v[1], v2[1]);
                        VectorCopy(v[2], v2[2]);
                        if (info->svbsp_insertoccluder)
                        {
                              if (castshadow)
                                    SVBSP_AddPolygon(&r_svbsp, 3, v2[0], true, NULL, NULL, 0);
                              continue;
                        }
                        if (info->svbsp_active && !(SVBSP_AddPolygon(&r_svbsp, 3, v2[0], false, NULL, NULL, 0) & 2))
                              continue;
                        // we don't occlude triangles from lighting even
                        // if they are backfacing, because when using
                        // shadowmapping they are often not fully occluded
                        // on the horizon of an edge
                        SETPVSBIT(info->outlighttrispvs, t);
                        if (castshadow)
                        {
                              if (currentmaterialflags & MATERIALFLAG_NOCULLFACE)
                              {
                                    // if the material is double sided we
                                    // can't cull by direction
                                    SETPVSBIT(info->outshadowtrispvs, t);
                              }
                              else if (r_shadow_frontsidecasting.integer)
                              {
                                    // front side casting occludes backfaces,
                                    // so they are completely useless as both
                                    // casters and lit polygons
                                    if (PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
                                          SETPVSBIT(info->outshadowtrispvs, t);
                              }
                              else
                              {
                                    // back side casting does not occlude
                                    // anything so we can't cull lit polygons
                                    if (!PointInfrontOfTriangle(info->relativelightorigin, v2[0], v2[1], v2[2]))
                                          SETPVSBIT(info->outshadowtrispvs, t);
                              }
                        }
                        if (!CHECKPVSBIT(info->outsurfacepvs, surfaceindex))
                        {
                              SETPVSBIT(info->outsurfacepvs, surfaceindex);
                              info->outsurfacelist[info->outnumsurfaces++] = surfaceindex;
                        }
                  }
            }
            else
            {
                  axis = node->type - BIH_SPLITX;
#if 0
                  if (!BoxesOverlap(info->lightmins, info->lightmaxs, node->mins, node->maxs))
                        continue;
#endif
#if 0
                  if (!r_shadow_compilingrtlight && R_CullBoxCustomPlanes(node->mins, node->maxs, rtlight->cached_numfrustumplanes, rtlight->cached_frustumplanes))
                        continue;
#endif
                  if (info->lightmins[axis] <= node->backmax)
                  {
                        if (info->lightmaxs[axis] >= node->frontmin && nodestackpos < GETLIGHTINFO_MAXNODESTACK)
                              nodestack[nodestackpos++] = node->front;
                        nodestack[nodestackpos++] = node->back;
                        continue;
                  }
                  else if (info->lightmaxs[axis] >= node->frontmin)
                  {
                        nodestack[nodestackpos++] = node->front;
                        continue;
                  }
                  else
                        continue; // light falls between children, nothing here
            }
      }
}

static void R_Q1BSP_CallRecursiveGetLightInfo(r_q1bsp_getlightinfo_t *info, qboolean use_svbsp)
{
      extern cvar_t r_shadow_usebihculling;
      if (use_svbsp)
      {
            float origin[3];
            VectorCopy(info->relativelightorigin, origin);
            r_svbsp.maxnodes = max(r_svbsp.maxnodes, 1<<12);
            r_svbsp.nodes = (svbsp_node_t*) R_FrameData_Alloc(r_svbsp.maxnodes * sizeof(svbsp_node_t));
            info->svbsp_active = true;
            info->svbsp_insertoccluder = true;
            for (;;)
            {
                  SVBSP_Init(&r_svbsp, origin, r_svbsp.maxnodes, r_svbsp.nodes);
                  R_Q1BSP_RecursiveGetLightInfo_BSP(info, false);
                  // if that failed, retry with more nodes
                  if (r_svbsp.ranoutofnodes)
                  {
                        // an upper limit is imposed
                        if (r_svbsp.maxnodes >= 2<<22)
                              break;
                        r_svbsp.maxnodes *= 2;
                        r_svbsp.nodes = (svbsp_node_t*) R_FrameData_Alloc(r_svbsp.maxnodes * sizeof(svbsp_node_t));
                        //Mem_Free(r_svbsp.nodes);
                        //r_svbsp.nodes = (svbsp_node_t*) Mem_Alloc(tempmempool, r_svbsp.maxnodes * sizeof(svbsp_node_t));
                  }
                  else
                        break;
            }
            // now clear the visibility arrays because we need to redo it
            info->outnumleafs = 0;
            info->outnumsurfaces = 0;
            memset(info->outleafpvs, 0, (info->model->brush.num_leafs + 7) >> 3);
            memset(info->outsurfacepvs, 0, (info->model->nummodelsurfaces + 7) >> 3);
            if (info->model->brush.shadowmesh)
                  memset(info->outshadowtrispvs, 0, (info->model->brush.shadowmesh->numtriangles + 7) >> 3);
            else
                  memset(info->outshadowtrispvs, 0, (info->model->surfmesh.num_triangles + 7) >> 3);
            memset(info->outlighttrispvs, 0, (info->model->surfmesh.num_triangles + 7) >> 3);
      }
      else
            info->svbsp_active = false;

      // we HAVE to mark the leaf the light is in as lit, because portals are
      // irrelevant to a leaf that the light source is inside of
      // (and they are all facing away, too)
      {
            mnode_t *node = info->model->brush.data_nodes;
            mleaf_t *leaf;
            while (node->plane)
                  node = node->children[(node->plane->type < 3 ? info->relativelightorigin[node->plane->type] : DotProduct(info->relativelightorigin,node->plane->normal)) < node->plane->dist];
            leaf = (mleaf_t *)node;
            info->outmins[0] = min(info->outmins[0], leaf->mins[0]);
            info->outmins[1] = min(info->outmins[1], leaf->mins[1]);
            info->outmins[2] = min(info->outmins[2], leaf->mins[2]);
            info->outmaxs[0] = max(info->outmaxs[0], leaf->maxs[0]);
            info->outmaxs[1] = max(info->outmaxs[1], leaf->maxs[1]);
            info->outmaxs[2] = max(info->outmaxs[2], leaf->maxs[2]);
            if (info->outleafpvs)
            {
                  int leafindex = leaf - info->model->brush.data_leafs;
                  if (!CHECKPVSBIT(info->outleafpvs, leafindex))
                  {
                        SETPVSBIT(info->outleafpvs, leafindex);
                        info->outleaflist[info->outnumleafs++] = leafindex;
                  }
            }
      }

      info->svbsp_insertoccluder = false;
      // use BIH culling on single leaf maps (generally this only happens if running a model as a map), otherwise use BSP culling to make use of vis data
      if (r_shadow_usebihculling.integer > 0 && (r_shadow_usebihculling.integer == 2 || info->model->brush.num_leafs == 1) && info->model->render_bih.leafs != NULL)
      {
            R_Q1BSP_RecursiveGetLightInfo_BSP(info, true);
            R_Q1BSP_RecursiveGetLightInfo_BIH(info, &info->model->render_bih);
      }
      else
            R_Q1BSP_RecursiveGetLightInfo_BSP(info, false);
      // we're using temporary framedata memory, so this pointer will be invalid soon, clear it
      r_svbsp.nodes = NULL;
      if (developer_extra.integer && use_svbsp)
      {
            Con_DPrintf("GetLightInfo: svbsp built with %i nodes, polygon stats:\n", r_svbsp.numnodes);
            Con_DPrintf("occluders: %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_occluders_accepted, r_svbsp.stat_occluders_rejected, r_svbsp.stat_occluders_fragments_accepted, r_svbsp.stat_occluders_fragments_rejected);
            Con_DPrintf("queries  : %i accepted, %i rejected, %i fragments accepted, %i fragments rejected.\n", r_svbsp.stat_queries_accepted, r_svbsp.stat_queries_rejected, r_svbsp.stat_queries_fragments_accepted, r_svbsp.stat_queries_fragments_rejected);
      }
}

static msurface_t *r_q1bsp_getlightinfo_surfaces;

int R_Q1BSP_GetLightInfo_comparefunc(const void *ap, const void *bp)
{
      int a = *(int*)ap;
      int b = *(int*)bp;
      const msurface_t *as = r_q1bsp_getlightinfo_surfaces + a;
      const msurface_t *bs = r_q1bsp_getlightinfo_surfaces + b;
      if (as->texture < bs->texture)
            return -1;
      if (as->texture > bs->texture)
            return 1;
      return a - b;
}

extern cvar_t r_shadow_sortsurfaces;

void R_Q1BSP_GetLightInfo(entity_render_t *ent, vec3_t relativelightorigin, float lightradius, vec3_t outmins, vec3_t outmaxs, int *outleaflist, unsigned char *outleafpvs, int *outnumleafspointer, int *outsurfacelist, unsigned char *outsurfacepvs, int *outnumsurfacespointer, unsigned char *outshadowtrispvs, unsigned char *outlighttrispvs, unsigned char *visitingleafpvs, int numfrustumplanes, const mplane_t *frustumplanes)
{
      r_q1bsp_getlightinfo_t info;
      VectorCopy(relativelightorigin, info.relativelightorigin);
      info.lightradius = lightradius;
      info.lightmins[0] = info.relativelightorigin[0] - info.lightradius;
      info.lightmins[1] = info.relativelightorigin[1] - info.lightradius;
      info.lightmins[2] = info.relativelightorigin[2] - info.lightradius;
      info.lightmaxs[0] = info.relativelightorigin[0] + info.lightradius;
      info.lightmaxs[1] = info.relativelightorigin[1] + info.lightradius;
      info.lightmaxs[2] = info.relativelightorigin[2] + info.lightradius;
      if (ent->model == NULL)
      {
            VectorCopy(info.lightmins, outmins);
            VectorCopy(info.lightmaxs, outmaxs);
            *outnumleafspointer = 0;
            *outnumsurfacespointer = 0;
            return;
      }
      info.model = ent->model;
      info.outleaflist = outleaflist;
      info.outleafpvs = outleafpvs;
      info.outnumleafs = 0;
      info.visitingleafpvs = visitingleafpvs;
      info.outsurfacelist = outsurfacelist;
      info.outsurfacepvs = outsurfacepvs;
      info.outshadowtrispvs = outshadowtrispvs;
      info.outlighttrispvs = outlighttrispvs;
      info.outnumsurfaces = 0;
      info.numfrustumplanes = numfrustumplanes;
      info.frustumplanes = frustumplanes;
      VectorCopy(info.relativelightorigin, info.outmins);
      VectorCopy(info.relativelightorigin, info.outmaxs);
      memset(visitingleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3);
      memset(outleafpvs, 0, (info.model->brush.num_leafs + 7) >> 3);
      memset(outsurfacepvs, 0, (info.model->nummodelsurfaces + 7) >> 3);
      if (info.model->brush.shadowmesh)
            memset(outshadowtrispvs, 0, (info.model->brush.shadowmesh->numtriangles + 7) >> 3);
      else
            memset(outshadowtrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3);
      memset(outlighttrispvs, 0, (info.model->surfmesh.num_triangles + 7) >> 3);
      if (info.model->brush.GetPVS && r_shadow_frontsidecasting.integer)
            info.pvs = info.model->brush.GetPVS(info.model, info.relativelightorigin);
      else
            info.pvs = NULL;
      RSurf_ActiveWorldEntity();

      if (r_shadow_frontsidecasting.integer && r_shadow_compilingrtlight && r_shadow_realtime_world_compileportalculling.integer && info.model->brush.data_portals)
      {
            // use portal recursion for exact light volume culling, and exact surface checking
            Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, true, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs, info.visitingleafpvs);
      }
      else if (r_shadow_frontsidecasting.integer && r_shadow_realtime_dlight_portalculling.integer && info.model->brush.data_portals)
      {
            // use portal recursion for exact light volume culling, but not the expensive exact surface checking
            Portal_Visibility(info.model, info.relativelightorigin, info.outleaflist, info.outleafpvs, &info.outnumleafs, info.outsurfacelist, info.outsurfacepvs, &info.outnumsurfaces, NULL, 0, r_shadow_realtime_dlight_portalculling.integer >= 2, info.lightmins, info.lightmaxs, info.outmins, info.outmaxs, info.outshadowtrispvs, info.outlighttrispvs, info.visitingleafpvs);
      }
      else
      {
            // recurse the bsp tree, checking leafs and surfaces for visibility
            // optionally using svbsp for exact culling of compiled lights
            // (or if the user enables dlight svbsp culling, which is mostly for
            //  debugging not actual use)
            R_Q1BSP_CallRecursiveGetLightInfo(&info, (r_shadow_compilingrtlight ? r_shadow_realtime_world_compilesvbsp.integer : r_shadow_realtime_dlight_svbspculling.integer) != 0);
      }

      rsurface.entity = NULL; // used only by R_GetCurrentTexture and RSurf_ActiveWorldEntity/RSurf_ActiveModelEntity

      // limit combined leaf box to light boundaries
      outmins[0] = max(info.outmins[0] - 1, info.lightmins[0]);
      outmins[1] = max(info.outmins[1] - 1, info.lightmins[1]);
      outmins[2] = max(info.outmins[2] - 1, info.lightmins[2]);
      outmaxs[0] = min(info.outmaxs[0] + 1, info.lightmaxs[0]);
      outmaxs[1] = min(info.outmaxs[1] + 1, info.lightmaxs[1]);
      outmaxs[2] = min(info.outmaxs[2] + 1, info.lightmaxs[2]);

      *outnumleafspointer = info.outnumleafs;
      *outnumsurfacespointer = info.outnumsurfaces;

      // now sort surfaces by texture for faster rendering
      r_q1bsp_getlightinfo_surfaces = info.model->data_surfaces;
      if (r_shadow_sortsurfaces.integer)
            qsort(info.outsurfacelist, info.outnumsurfaces, sizeof(*info.outsurfacelist), R_Q1BSP_GetLightInfo_comparefunc);
}

void R_Q1BSP_CompileShadowVolume(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist)
{
      dp_model_t *model = ent->model;
      msurface_t *surface;
      int surfacelistindex;
      float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value;
      // if triangle neighbors are disabled, shadowvolumes are disabled
      if (!model->brush.shadowmesh->neighbor3i)
            return;
      r_shadow_compilingrtlight->static_meshchain_shadow_zfail = Mod_ShadowMesh_Begin(r_main_mempool, 32768, 32768, NULL, NULL, NULL, false, false, true);
      R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles);
      for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
      {
            surface = model->data_surfaces + surfacelist[surfacelistindex];
            if (surface->texture->basematerialflags & MATERIALFLAG_NOSHADOW)
                  continue;
            R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs);
      }
      R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist, ent->mins, ent->maxs);
      r_shadow_compilingrtlight->static_meshchain_shadow_zfail = Mod_ShadowMesh_Finish(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_zfail, false, false, true);
}

extern cvar_t r_polygonoffset_submodel_factor;
extern cvar_t r_polygonoffset_submodel_offset;
void R_Q1BSP_DrawShadowVolume(entity_render_t *ent, const vec3_t relativelightorigin, const vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const vec3_t lightmins, const vec3_t lightmaxs)
{
      dp_model_t *model = ent->model;
      const msurface_t *surface;
      int modelsurfacelistindex;
      float projectdistance = relativelightdirection ? lightradius : lightradius + model->radius*2 + r_shadow_projectdistance.value;
      // check the box in modelspace, it was already checked in worldspace
      if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs))
            return;
      R_FrameData_SetMark();
      if (ent->model->brush.submodel)
            GL_PolygonOffset(r_refdef.shadowpolygonfactor + r_polygonoffset_submodel_factor.value, r_refdef.shadowpolygonoffset + r_polygonoffset_submodel_offset.value);
      if (model->brush.shadowmesh)
      {
            // if triangle neighbors are disabled, shadowvolumes are disabled
            if (!model->brush.shadowmesh->neighbor3i)
                  return;
            R_Shadow_PrepareShadowMark(model->brush.shadowmesh->numtriangles);
            for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++)
            {
                  surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
                  if (R_GetCurrentTexture(surface->texture)->currentmaterialflags & MATERIALFLAG_NOSHADOW)
                        continue;
                  R_Shadow_MarkVolumeFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs);
            }
            R_Shadow_VolumeFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, model->brush.shadowmesh->neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist, ent->mins, ent->maxs);
      }
      else
      {
            // if triangle neighbors are disabled, shadowvolumes are disabled
            if (!model->surfmesh.data_neighbor3i)
                  return;
            projectdistance = lightradius + model->radius*2;
            R_Shadow_PrepareShadowMark(model->surfmesh.num_triangles);
            // identify lit faces within the bounding box
            for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++)
            {
                  surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
                  rsurface.texture = R_GetCurrentTexture(surface->texture);
                  if (rsurface.texture->currentmaterialflags & MATERIALFLAG_NOSHADOW)
                        continue;
                  R_Shadow_MarkVolumeFromBox(surface->num_firsttriangle, surface->num_triangles, rsurface.modelvertex3f, rsurface.modelelement3i, relativelightorigin, relativelightdirection, lightmins, lightmaxs, surface->mins, surface->maxs);
            }
            R_Shadow_VolumeFromList(model->surfmesh.num_vertices, model->surfmesh.num_triangles, rsurface.modelvertex3f, model->surfmesh.data_element3i, model->surfmesh.data_neighbor3i, relativelightorigin, relativelightdirection, projectdistance, numshadowmark, shadowmarklist, ent->mins, ent->maxs);
      }
      if (ent->model->brush.submodel)
            GL_PolygonOffset(r_refdef.shadowpolygonfactor, r_refdef.shadowpolygonoffset);
      R_FrameData_ReturnToMark();
}

void R_Q1BSP_CompileShadowMap(entity_render_t *ent, vec3_t relativelightorigin, vec3_t relativelightdirection, float lightradius, int numsurfaces, const int *surfacelist)
{
      dp_model_t *model = ent->model;
      msurface_t *surface;
      int surfacelistindex;
      int sidetotals[6] = { 0, 0, 0, 0, 0, 0 }, sidemasks = 0;
      int i;
      r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap = Mod_ShadowMesh_Begin(r_main_mempool, 32768, 32768, NULL, NULL, NULL, false, false, true);
      R_Shadow_PrepareShadowSides(model->brush.shadowmesh->numtriangles);
      for (surfacelistindex = 0;surfacelistindex < numsurfaces;surfacelistindex++)
      {
            surface = model->data_surfaces + surfacelist[surfacelistindex];
            sidemasks |= R_Shadow_ChooseSidesFromBox(surface->num_firstshadowmeshtriangle, surface->num_triangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, &r_shadow_compilingrtlight->matrix_worldtolight, relativelightorigin, relativelightdirection, r_shadow_compilingrtlight->cullmins, r_shadow_compilingrtlight->cullmaxs, surface->mins, surface->maxs, surface->texture->basematerialflags & MATERIALFLAG_NOSHADOW ? NULL : sidetotals);
      }
      R_Shadow_ShadowMapFromList(model->brush.shadowmesh->numverts, model->brush.shadowmesh->numtriangles, model->brush.shadowmesh->vertex3f, model->brush.shadowmesh->element3i, numshadowsides, sidetotals, shadowsides, shadowsideslist);
      r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap = Mod_ShadowMesh_Finish(r_main_mempool, r_shadow_compilingrtlight->static_meshchain_shadow_shadowmap, false, false, true);
      r_shadow_compilingrtlight->static_shadowmap_receivers &= sidemasks;
      for(i = 0;i<6;i++)
            if(!sidetotals[i])
                  r_shadow_compilingrtlight->static_shadowmap_casters &= ~(1 << i);
}

#define RSURF_MAX_BATCHSURFACES 8192

static const msurface_t *batchsurfacelist[RSURF_MAX_BATCHSURFACES];

void R_Q1BSP_DrawShadowMap(int side, entity_render_t *ent, const vec3_t relativelightorigin, const vec3_t relativelightdirection, float lightradius, int modelnumsurfaces, const int *modelsurfacelist, const unsigned char *surfacesides, const vec3_t lightmins, const vec3_t lightmaxs)
{
      dp_model_t *model = ent->model;
      const msurface_t *surface;
      int modelsurfacelistindex, batchnumsurfaces;
      // check the box in modelspace, it was already checked in worldspace
      if (!BoxesOverlap(model->normalmins, model->normalmaxs, lightmins, lightmaxs))
            return;
      R_FrameData_SetMark();
      // identify lit faces within the bounding box
      for (modelsurfacelistindex = 0;modelsurfacelistindex < modelnumsurfaces;modelsurfacelistindex++)
      {
            surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
            if (surfacesides && !(surfacesides[modelsurfacelistindex] && (1 << side)))
                  continue;
            rsurface.texture = R_GetCurrentTexture(surface->texture);
            if (rsurface.texture->currentmaterialflags & MATERIALFLAG_NOSHADOW)
                  continue;
            if (!BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs))
                  continue;
            r_refdef.stats.lights_dynamicshadowtriangles += surface->num_triangles;
            r_refdef.stats.lights_shadowtriangles += surface->num_triangles;
            batchsurfacelist[0] = surface;
            batchnumsurfaces = 1;
            while(++modelsurfacelistindex < modelnumsurfaces && batchnumsurfaces < RSURF_MAX_BATCHSURFACES)
            {
                  surface = model->data_surfaces + modelsurfacelist[modelsurfacelistindex];
                  if (surfacesides && !(surfacesides[modelsurfacelistindex] & (1 << side)))
                        continue;
                  if (surface->texture != batchsurfacelist[0]->texture)
                        break;
                  if (!BoxesOverlap(lightmins, lightmaxs, surface->mins, surface->maxs))
                        continue;
                  r_refdef.stats.lights_dynamicshadowtriangles += surface->num_triangles;
                  r_refdef.stats.lights_shadowtriangles += surface->num_triangles;
                  batchsurfacelist[batchnumsurfaces++] = surface;
            }
            --modelsurfacelistindex;
            GL_CullFace(rsurface.texture->currentmaterialflags & MATERIALFLAG_NOCULLFACE ? GL_NONE : r_refdef.view.cullface_back);
            RSurf_PrepareVerticesForBatch(BATCHNEED_ARRAY_VERTEX, batchnumsurfaces, batchsurfacelist);
            if (rsurface.batchvertex3fbuffer)
                  R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3fbuffer);
            else
                  R_Mesh_PrepareVertices_Vertex3f(rsurface.batchnumvertices, rsurface.batchvertex3f, rsurface.batchvertex3f_vertexbuffer);
            RSurf_DrawBatch();
      }
      R_FrameData_ReturnToMark();
}

#define BATCHSIZE 1024

static void R_Q1BSP_DrawLight_TransparentCallback(const entity_render_t *ent, const rtlight_t *rtlight, int numsurfaces, int *surfacelist)
{
      int i, j, endsurface;
      texture_t *t;
      const msurface_t *surface;
      R_FrameData_SetMark();
      // note: in practice this never actually receives batches
      R_Shadow_RenderMode_Begin();
      R_Shadow_RenderMode_ActiveLight(rtlight);
      R_Shadow_RenderMode_Lighting(false, true, false);
      R_Shadow_SetupEntityLight(ent);
      for (i = 0;i < numsurfaces;i = j)
      {
            j = i + 1;
            surface = rsurface.modelsurfaces + surfacelist[i];
            t = surface->texture;
            rsurface.texture = R_GetCurrentTexture(t);
            endsurface = min(j + BATCHSIZE, numsurfaces);
            for (j = i;j < endsurface;j++)
            {
                  surface = rsurface.modelsurfaces + surfacelist[j];
                  if (t != surface->texture)
                        break;
                  R_Shadow_RenderLighting(1, &surface);
            }
      }
      R_Shadow_RenderMode_End();
      R_FrameData_ReturnToMark();
}

extern qboolean r_shadow_usingdeferredprepass;
void R_Q1BSP_DrawLight(entity_render_t *ent, int numsurfaces, const int *surfacelist, const unsigned char *lighttrispvs)
{
      dp_model_t *model = ent->model;
      const msurface_t *surface;
      int i, k, kend, l, endsurface, batchnumsurfaces, texturenumsurfaces;
      const msurface_t **texturesurfacelist;
      texture_t *tex;
      CHECKGLERROR
      R_FrameData_SetMark();
      // this is a double loop because non-visible surface skipping has to be
      // fast, and even if this is not the world model (and hence no visibility
      // checking) the input surface list and batch buffer are different formats
      // so some processing is necessary.  (luckily models have few surfaces)
      for (i = 0;i < numsurfaces;)
      {
            batchnumsurfaces = 0;
            endsurface = min(i + RSURF_MAX_BATCHSURFACES, numsurfaces);
            if (ent == r_refdef.scene.worldentity)
            {
                  for (;i < endsurface;i++)
                        if (r_refdef.viewcache.world_surfacevisible[surfacelist[i]])
                              batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i];
            }
            else
            {
                  for (;i < endsurface;i++)
                        batchsurfacelist[batchnumsurfaces++] = model->data_surfaces + surfacelist[i];
            }
            if (!batchnumsurfaces)
                  continue;
            for (k = 0;k < batchnumsurfaces;k = kend)
            {
                  surface = batchsurfacelist[k];
                  tex = surface->texture;
                  rsurface.texture = R_GetCurrentTexture(tex);
                  // gather surfaces into a batch range
                  for (kend = k;kend < batchnumsurfaces && tex == batchsurfacelist[kend]->texture;kend++)
                        ;
                  // now figure out what to do with this particular range of surfaces
                  // VorteX: added MATERIALFLAG_NORTLIGHT
                  if ((rsurface.texture->currentmaterialflags & (MATERIALFLAG_WALL + MATERIALFLAG_NORTLIGHT)) != MATERIALFLAG_WALL)
                        continue;
                  if (r_waterstate.renderingscene && (rsurface.texture->currentmaterialflags & (MATERIALFLAG_WATERSHADER | MATERIALFLAG_REFRACTION | MATERIALFLAG_REFLECTION | MATERIALFLAG_CAMERA)))
                        continue;
                  if (rsurface.texture->currentmaterialflags & MATERIALFLAGMASK_DEPTHSORTED)
                  {
                        vec3_t tempcenter, center;
                        for (l = k;l < kend;l++)
                        {
                              surface = batchsurfacelist[l];
                              tempcenter[0] = (surface->mins[0] + surface->maxs[0]) * 0.5f;
                              tempcenter[1] = (surface->mins[1] + surface->maxs[1]) * 0.5f;
                              tempcenter[2] = (surface->mins[2] + surface->maxs[2]) * 0.5f;
                              Matrix4x4_Transform(&rsurface.matrix, tempcenter, center);
                              R_MeshQueue_AddTransparent(rsurface.texture->currentmaterialflags & MATERIALFLAG_NODEPTHTEST ? r_refdef.view.origin : center, R_Q1BSP_DrawLight_TransparentCallback, ent, surface - rsurface.modelsurfaces, rsurface.rtlight);
                        }
                        continue;
                  }
                  if (r_shadow_usingdeferredprepass)
                        continue;
                  texturenumsurfaces = kend - k;
                  texturesurfacelist = batchsurfacelist + k;
                  R_Shadow_RenderLighting(texturenumsurfaces, texturesurfacelist);
            }
      }
      R_FrameData_ReturnToMark();
}

//Made by [515]
void R_ReplaceWorldTexture (void)
{
      dp_model_t        *m;
      texture_t   *t;
      int               i;
      const char  *r, *newt;
      skinframe_t *skinframe;
      if (!r_refdef.scene.worldmodel)
      {
            Con_Printf("There is no worldmodel\n");
            return;
      }
      m = r_refdef.scene.worldmodel;

      if(Cmd_Argc() < 2)
      {
            Con_Print("r_replacemaptexture <texname> <newtexname> - replaces texture\n");
            Con_Print("r_replacemaptexture <texname> - switch back to default texture\n");
            return;
      }
      if(!cl.islocalgame || !cl.worldmodel)
      {
            Con_Print("This command works only in singleplayer\n");
            return;
      }
      r = Cmd_Argv(1);
      newt = Cmd_Argv(2);
      if(!newt[0])
            newt = r;
      for(i=0,t=m->data_textures;i<m->num_textures;i++,t++)
      {
            if(/*t->width && !strcasecmp(t->name, r)*/ matchpattern( t->name, r, true ) )
            {
                  if ((skinframe = R_SkinFrame_LoadExternal(newt, TEXF_MIPMAP | TEXF_ALPHA | TEXF_PICMIP, true)))
                  {
//                      t->skinframes[0] = skinframe;
                        t->currentskinframe = skinframe;
                        t->currentskinframe = skinframe;
                        Con_Printf("%s replaced with %s\n", r, newt);
                  }
                  else
                  {
                        Con_Printf("%s was not found\n", newt);
                        return;
                  }
            }
      }
}

//Made by [515]
void R_ListWorldTextures (void)
{
      dp_model_t        *m;
      texture_t   *t;
      int               i;
      if (!r_refdef.scene.worldmodel)
      {
            Con_Printf("There is no worldmodel\n");
            return;
      }
      m = r_refdef.scene.worldmodel;

      Con_Print("Worldmodel textures :\n");
      for(i=0,t=m->data_textures;i<m->num_textures;i++,t++)
            if (t->numskinframes)
                  Con_Printf("%s\n", t->name);
}

#if 0
static void gl_surf_start(void)
{
}

static void gl_surf_shutdown(void)
{
}

static void gl_surf_newmap(void)
{
}
#endif

void GL_Surf_Init(void)
{

      Cvar_RegisterVariable(&r_ambient);
      Cvar_RegisterVariable(&r_lockpvs);
      Cvar_RegisterVariable(&r_lockvisibility);
      Cvar_RegisterVariable(&r_useportalculling);
      Cvar_RegisterVariable(&r_usesurfaceculling);
      Cvar_RegisterVariable(&r_q3bsp_renderskydepth);

      Cmd_AddCommand ("r_replacemaptexture", R_ReplaceWorldTexture, "override a map texture for testing purposes");
      Cmd_AddCommand ("r_listmaptextures", R_ListWorldTextures, "list all textures used by the current map");

      //R_RegisterModule("GL_Surf", gl_surf_start, gl_surf_shutdown, gl_surf_newmap);
}


Generated by  Doxygen 1.6.0   Back to index