Logo Search packages:      
Sourcecode: darkplaces version File versions  Download package

collision.c

#include "quakedef.h"
#include "polygon.h"

#define COLLISION_EDGEDIR_DOT_EPSILON (0.999f)
#define COLLISION_EDGECROSS_MINLENGTH2 (1.0f / 4194304.0f)
#define COLLISION_SNAPSCALE (32.0f)
#define COLLISION_SNAP (1.0f / COLLISION_SNAPSCALE)
#define COLLISION_SNAP2 (2.0f / COLLISION_SNAPSCALE)
#define COLLISION_PLANE_DIST_EPSILON (2.0f / COLLISION_SNAPSCALE)

cvar_t collision_impactnudge = {0, "collision_impactnudge", "0.03125", "how much to back off from the impact"};
cvar_t collision_startnudge = {0, "collision_startnudge", "0", "how much to bias collision trace start"};
cvar_t collision_endnudge = {0, "collision_endnudge", "0", "how much to bias collision trace end"};
cvar_t collision_enternudge = {0, "collision_enternudge", "0", "how much to bias collision entry fraction"};
cvar_t collision_leavenudge = {0, "collision_leavenudge", "0", "how much to bias collision exit fraction"};
cvar_t collision_prefernudgedfraction = {0, "collision_prefernudgedfraction", "1", "whether to sort collision events by nudged fraction (1) or real fraction (0)"};
#ifdef COLLISION_STUPID_TRACE_ENDPOS_IN_SOLID_WORKAROUND
cvar_t collision_endposnudge = {0, "collision_endposnudge", "0", "workaround to fix trace_endpos sometimes being returned where it would be inside solid by making that collision hit (recommended: values like 1)"};
#endif
cvar_t collision_debug_tracelineasbox = {0, "collision_debug_tracelineasbox", "0", "workaround for any bugs in Collision_TraceLineBrushFloat by using Collision_TraceBrushBrushFloat"};
cvar_t collision_cache = {0, "collision_cache", "1", "store results of collision traces for next frame to reuse if possible (optimization)"};

mempool_t *collision_mempool;

void Collision_Init (void)
{
      Cvar_RegisterVariable(&collision_impactnudge);
      Cvar_RegisterVariable(&collision_startnudge);
      Cvar_RegisterVariable(&collision_endnudge);
      Cvar_RegisterVariable(&collision_enternudge);
      Cvar_RegisterVariable(&collision_leavenudge);
      Cvar_RegisterVariable(&collision_prefernudgedfraction);
#ifdef COLLISION_STUPID_TRACE_ENDPOS_IN_SOLID_WORKAROUND
      Cvar_RegisterVariable(&collision_endposnudge);
#endif
      Cvar_RegisterVariable(&collision_debug_tracelineasbox);
      Cvar_RegisterVariable(&collision_cache);
      collision_mempool = Mem_AllocPool("collision cache", 0, NULL);
      Collision_Cache_Init(collision_mempool);
}














void Collision_PrintBrushAsQHull(colbrushf_t *brush, const char *name)
{
      int i;
      Con_Printf("3 %s\n%i\n", name, brush->numpoints);
      for (i = 0;i < brush->numpoints;i++)
            Con_Printf("%f %f %f\n", brush->points[i].v[0], brush->points[i].v[1], brush->points[i].v[2]);
      // FIXME: optimize!
      Con_Printf("4\n%i\n", brush->numplanes);
      for (i = 0;i < brush->numplanes;i++)
            Con_Printf("%f %f %f %f\n", brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist);
}

void Collision_ValidateBrush(colbrushf_t *brush)
{
      int j, k, pointsoffplanes, pointonplanes, pointswithinsufficientplanes, printbrush;
      float d;
      printbrush = false;
      if (!brush->numpoints)
      {
            Con_Print("Collision_ValidateBrush: brush with no points!\n");
            printbrush = true;
      }
#if 0
      // it's ok for a brush to have one point and no planes...
      if (brush->numplanes == 0 && brush->numpoints != 1)
      {
            Con_Print("Collision_ValidateBrush: brush with no planes and more than one point!\n");
            printbrush = true;
      }
#endif
      if (brush->numplanes)
      {
            pointsoffplanes = 0;
            pointswithinsufficientplanes = 0;
            for (k = 0;k < brush->numplanes;k++)
                  if (DotProduct(brush->planes[k].normal, brush->planes[k].normal) < 0.0001f)
                        Con_Printf("Collision_ValidateBrush: plane #%i (%f %f %f %f) is degenerate\n", k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist);
            for (j = 0;j < brush->numpoints;j++)
            {
                  pointonplanes = 0;
                  for (k = 0;k < brush->numplanes;k++)
                  {
                        d = DotProduct(brush->points[j].v, brush->planes[k].normal) - brush->planes[k].dist;
                        if (d > COLLISION_PLANE_DIST_EPSILON)
                        {
                              Con_Printf("Collision_ValidateBrush: point #%i (%f %f %f) infront of plane #%i (%f %f %f %f)\n", j, brush->points[j].v[0], brush->points[j].v[1], brush->points[j].v[2], k, brush->planes[k].normal[0], brush->planes[k].normal[1], brush->planes[k].normal[2], brush->planes[k].dist);
                              printbrush = true;
                        }
                        if (fabs(d) > COLLISION_PLANE_DIST_EPSILON)
                              pointsoffplanes++;
                        else
                              pointonplanes++;
                  }
                  if (pointonplanes < 3)
                        pointswithinsufficientplanes++;
            }
            if (pointswithinsufficientplanes)
            {
                  Con_Print("Collision_ValidateBrush: some points have insufficient planes, every point must be on at least 3 planes to form a corner.\n");
                  printbrush = true;
            }
            if (pointsoffplanes == 0) // all points are on all planes
            {
                  Con_Print("Collision_ValidateBrush: all points lie on all planes (degenerate, no brush volume!)\n");
                  printbrush = true;
            }
      }
      if (printbrush)
            Collision_PrintBrushAsQHull(brush, "unnamed");
}

float nearestplanedist_float(const float *normal, const colpointf_t *points, int numpoints)
{
      float dist, bestdist;
      if (!numpoints)
            return 0;
      bestdist = DotProduct(points->v, normal);
      points++;
      while(--numpoints)
      {
            dist = DotProduct(points->v, normal);
            bestdist = min(bestdist, dist);
            points++;
      }
      return bestdist;
}

float furthestplanedist_float(const float *normal, const colpointf_t *points, int numpoints)
{
      float dist, bestdist;
      if (!numpoints)
            return 0;
      bestdist = DotProduct(points->v, normal);
      points++;
      while(--numpoints)
      {
            dist = DotProduct(points->v, normal);
            bestdist = max(bestdist, dist);
            points++;
      }
      return bestdist;
}

void Collision_CalcEdgeDirsForPolygonBrushFloat(colbrushf_t *brush)
{
      int i, j;
      for (i = 0, j = brush->numpoints - 1;i < brush->numpoints;j = i, i++)
            VectorSubtract(brush->points[i].v, brush->points[j].v, brush->edgedirs[j].v);
}

colbrushf_t *Collision_NewBrushFromPlanes(mempool_t *mempool, int numoriginalplanes, const colplanef_t *originalplanes, int supercontents, int q3surfaceflags, const texture_t *texture, int hasaabbplanes)
{
      // TODO: planesbuf could be replaced by a remapping table
      int j, k, l, m, w, xyzflags;
      int numpointsbuf = 0, maxpointsbuf = 256, numedgedirsbuf = 0, maxedgedirsbuf = 256, numplanesbuf = 0, maxplanesbuf = 256, numelementsbuf = 0, maxelementsbuf = 256;
      int isaabb = true;
      double maxdist;
      colbrushf_t *brush;
      colpointf_t pointsbuf[256];
      colpointf_t edgedirsbuf[256];
      colplanef_t planesbuf[256];
      int elementsbuf[1024];
      int polypointbuf[256];
      int pmaxpoints = 64;
      int pnumpoints;
      double p[2][3*64];
#if 0
      // enable these if debugging to avoid seeing garbage in unused data-
      memset(pointsbuf, 0, sizeof(pointsbuf));
      memset(edgedirsbuf, 0, sizeof(edgedirsbuf));
      memset(planesbuf, 0, sizeof(planesbuf));
      memset(elementsbuf, 0, sizeof(elementsbuf));
      memset(polypointbuf, 0, sizeof(polypointbuf));
      memset(p, 0, sizeof(p));
#endif

      // check if there are too many planes and skip the brush
      if (numoriginalplanes >= maxplanesbuf)
      {
            Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many planes for buffer\n");
            return NULL;
      }

      // figure out how large a bounding box we need to properly compute this brush
      maxdist = 0;
      for (j = 0;j < numoriginalplanes;j++)
            maxdist = max(maxdist, fabs(originalplanes[j].dist));
      // now make it large enough to enclose the entire brush, and round it off to a reasonable multiple of 1024
      maxdist = floor(maxdist * (4.0 / 1024.0) + 2) * 1024.0;
      // construct a collision brush (points, planes, and renderable mesh) from
      // a set of planes, this also optimizes out any unnecessary planes (ones
      // whose polygon is clipped away by the other planes)
      for (j = 0;j < numoriginalplanes;j++)
      {
            // add the new plane
            VectorCopy(originalplanes[j].normal, planesbuf[numplanesbuf].normal);
            planesbuf[numplanesbuf].dist = originalplanes[j].dist;
            planesbuf[numplanesbuf].q3surfaceflags = originalplanes[j].q3surfaceflags;
            planesbuf[numplanesbuf].texture = originalplanes[j].texture;
            numplanesbuf++;

            // create a large polygon from the plane
            w = 0;
            PolygonD_QuadForPlane(p[w], originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist, maxdist);
            pnumpoints = 4;
            // clip it by all other planes
            for (k = 0;k < numoriginalplanes && pnumpoints >= 3 && pnumpoints <= pmaxpoints;k++)
            {
                  // skip the plane this polygon
                  // (nothing happens if it is processed, this is just an optimization)
                  if (k != j)
                  {
                        // we want to keep the inside of the brush plane so we flip
                        // the cutting plane
                        PolygonD_Divide(pnumpoints, p[w], -originalplanes[k].normal[0], -originalplanes[k].normal[1], -originalplanes[k].normal[2], -originalplanes[k].dist, COLLISION_PLANE_DIST_EPSILON, pmaxpoints, p[!w], &pnumpoints, 0, NULL, NULL, NULL);
                        w = !w;
                  }
            }

            // if nothing is left, skip it
            if (pnumpoints < 3)
            {
                  //Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon for plane %f %f %f %f clipped away\n", originalplanes[j].normal[0], originalplanes[j].normal[1], originalplanes[j].normal[2], originalplanes[j].dist);
                  continue;
            }

            for (k = 0;k < pnumpoints;k++)
            {
                  int l, m;
                  m = 0;
                  for (l = 0;l < numoriginalplanes;l++)
                        if (fabs(DotProduct(&p[w][k*3], originalplanes[l].normal) - originalplanes[l].dist) < COLLISION_PLANE_DIST_EPSILON)
                              m++;
                  if (m < 3)
                        break;
            }
            if (k < pnumpoints)
            {
                  Con_DPrintf("Collision_NewBrushFromPlanes: warning: polygon point does not lie on at least 3 planes\n");
                  //return NULL;
            }

            // check if there are too many polygon vertices for buffer
            if (pnumpoints > pmaxpoints)
            {
                  Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n");
                  return NULL;
            }

            // check if there are too many triangle elements for buffer
            if (numelementsbuf + (pnumpoints - 2) * 3 > maxelementsbuf)
            {
                  Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many triangle elements for buffer\n");
                  return NULL;
            }

            // add the unique points for this polygon
            for (k = 0;k < pnumpoints;k++)
            {
                  float v[3];
                  // downgrade to float precision before comparing
                  VectorCopy(&p[w][k*3], v);

                  // check if there is already a matching point (no duplicates)
                  for (m = 0;m < numpointsbuf;m++)
                        if (VectorDistance2(v, pointsbuf[m].v) < COLLISION_SNAP2)
                              break;

                  // if there is no match, add a new one
                  if (m == numpointsbuf)
                  {
                        // check if there are too many and skip the brush
                        if (numpointsbuf >= maxpointsbuf)
                        {
                              Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many points for buffer\n");
                              return NULL;
                        }
                        // add the new one
                        VectorCopy(&p[w][k*3], pointsbuf[numpointsbuf].v);
                        numpointsbuf++;
                  }

                  // store the index into a buffer
                  polypointbuf[k] = m;
            }

            // add the triangles for the polygon
            // (this particular code makes a triangle fan)
            for (k = 0;k < pnumpoints - 2;k++)
            {
                  elementsbuf[numelementsbuf++] = polypointbuf[0];
                  elementsbuf[numelementsbuf++] = polypointbuf[k + 1];
                  elementsbuf[numelementsbuf++] = polypointbuf[k + 2];
            }

            // add the unique edgedirs for this polygon
            for (k = 0, l = pnumpoints-1;k < pnumpoints;l = k, k++)
            {
                  float dir[3];
                  // downgrade to float precision before comparing
                  VectorSubtract(&p[w][k*3], &p[w][l*3], dir);
                  VectorNormalize(dir);

                  // check if there is already a matching edgedir (no duplicates)
                  for (m = 0;m < numedgedirsbuf;m++)
                        if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON)
                              break;
                  // skip this if there is
                  if (m < numedgedirsbuf)
                        continue;

                  // try again with negated edgedir
                  VectorNegate(dir, dir);
                  // check if there is already a matching edgedir (no duplicates)
                  for (m = 0;m < numedgedirsbuf;m++)
                        if (DotProduct(dir, edgedirsbuf[m].v) >= COLLISION_EDGEDIR_DOT_EPSILON)
                              break;
                  // if there is no match, add a new one
                  if (m == numedgedirsbuf)
                  {
                        // check if there are too many and skip the brush
                        if (numedgedirsbuf >= maxedgedirsbuf)
                        {
                              Con_DPrint("Collision_NewBrushFromPlanes: failed to build collision brush: too many edgedirs for buffer\n");
                              return NULL;
                        }
                        // add the new one
                        VectorCopy(dir, edgedirsbuf[numedgedirsbuf].v);
                        numedgedirsbuf++;
                  }
            }

            // if any normal is not purely axial, it's not an axis-aligned box
            if (isaabb && (originalplanes[j].normal[0] == 0) + (originalplanes[j].normal[1] == 0) + (originalplanes[j].normal[2] == 0) < 2)
                  isaabb = false;
      }

      // if nothing is left, there's nothing to allocate
      if (numplanesbuf < 4)
      {
            Con_DPrintf("Collision_NewBrushFromPlanes: failed to build collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf);
            return NULL;
      }

      // if no triangles or points could be constructed, then this routine failed but the brush is not discarded
      if (numelementsbuf < 12 || numpointsbuf < 4)
            Con_DPrintf("Collision_NewBrushFromPlanes: unable to rebuild triangles/points for collision brush: %i triangles, %i planes (input was %i planes), %i vertices\n", numelementsbuf / 3, numplanesbuf, numoriginalplanes, numpointsbuf);

      // validate plane distances
      for (j = 0;j < numplanesbuf;j++)
      {
            float d = furthestplanedist_float(planesbuf[j].normal, pointsbuf, numpointsbuf);
            if (fabs(planesbuf[j].dist - d) > COLLISION_PLANE_DIST_EPSILON)
                  Con_DPrintf("plane %f %f %f %f mismatches dist %f\n", planesbuf[j].normal[0], planesbuf[j].normal[1], planesbuf[j].normal[2], planesbuf[j].dist, d);
      }

      // allocate the brush and copy to it
      brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colpointf_t) * numpointsbuf + sizeof(colpointf_t) * numedgedirsbuf + sizeof(colplanef_t) * numplanesbuf + sizeof(int) * numelementsbuf);
      brush->isaabb = isaabb;
      brush->hasaabbplanes = hasaabbplanes;
      brush->supercontents = supercontents;
      brush->numplanes = numplanesbuf;
      brush->numedgedirs = numedgedirsbuf;
      brush->numpoints = numpointsbuf;
      brush->numtriangles = numelementsbuf / 3;
      brush->planes = (colplanef_t *)(brush + 1);
      brush->points = (colpointf_t *)(brush->planes + brush->numplanes);
      brush->edgedirs = (colpointf_t *)(brush->points + brush->numpoints);
      brush->elements = (int *)(brush->points + brush->numpoints);
      brush->q3surfaceflags = q3surfaceflags;
      brush->texture = texture;
      for (j = 0;j < brush->numpoints;j++)
      {
            brush->points[j].v[0] = pointsbuf[j].v[0];
            brush->points[j].v[1] = pointsbuf[j].v[1];
            brush->points[j].v[2] = pointsbuf[j].v[2];
      }
      for (j = 0;j < brush->numedgedirs;j++)
      {
            brush->edgedirs[j].v[0] = edgedirsbuf[j].v[0];
            brush->edgedirs[j].v[1] = edgedirsbuf[j].v[1];
            brush->edgedirs[j].v[2] = edgedirsbuf[j].v[2];
      }
      for (j = 0;j < brush->numplanes;j++)
      {
            brush->planes[j].normal[0] = planesbuf[j].normal[0];
            brush->planes[j].normal[1] = planesbuf[j].normal[1];
            brush->planes[j].normal[2] = planesbuf[j].normal[2];
            brush->planes[j].dist = planesbuf[j].dist;
            brush->planes[j].q3surfaceflags = planesbuf[j].q3surfaceflags;
            brush->planes[j].texture = planesbuf[j].texture;
      }
      for (j = 0;j < brush->numtriangles * 3;j++)
            brush->elements[j] = elementsbuf[j];

      xyzflags = 0;
      VectorClear(brush->mins);
      VectorClear(brush->maxs);
      for (j = 0;j < min(6, numoriginalplanes);j++)
      {
                 if (originalplanes[j].normal[0] ==  1) {xyzflags |=  1;brush->maxs[0] =  originalplanes[j].dist;}
            else if (originalplanes[j].normal[0] == -1) {xyzflags |=  2;brush->mins[0] = -originalplanes[j].dist;}
            else if (originalplanes[j].normal[1] ==  1) {xyzflags |=  4;brush->maxs[1] =  originalplanes[j].dist;}
            else if (originalplanes[j].normal[1] == -1) {xyzflags |=  8;brush->mins[1] = -originalplanes[j].dist;}
            else if (originalplanes[j].normal[2] ==  1) {xyzflags |= 16;brush->maxs[2] =  originalplanes[j].dist;}
            else if (originalplanes[j].normal[2] == -1) {xyzflags |= 32;brush->mins[2] = -originalplanes[j].dist;}
      }
      // if not all xyzflags were set, then this is not a brush from q3map/q3map2, and needs reconstruction of the bounding box
      // (this case works for any brush with valid points, but sometimes brushes are not reconstructed properly and hence the points are not valid, so this is reserved as a fallback case)
      if (xyzflags != 63)
      {
            VectorCopy(brush->points[0].v, brush->mins);
            VectorCopy(brush->points[0].v, brush->maxs);
            for (j = 1;j < brush->numpoints;j++)
            {
                  brush->mins[0] = min(brush->mins[0], brush->points[j].v[0]);
                  brush->mins[1] = min(brush->mins[1], brush->points[j].v[1]);
                  brush->mins[2] = min(brush->mins[2], brush->points[j].v[2]);
                  brush->maxs[0] = max(brush->maxs[0], brush->points[j].v[0]);
                  brush->maxs[1] = max(brush->maxs[1], brush->points[j].v[1]);
                  brush->maxs[2] = max(brush->maxs[2], brush->points[j].v[2]);
            }
      }
      brush->mins[0] -= 1;
      brush->mins[1] -= 1;
      brush->mins[2] -= 1;
      brush->maxs[0] += 1;
      brush->maxs[1] += 1;
      brush->maxs[2] += 1;
      Collision_ValidateBrush(brush);
      return brush;
}



void Collision_CalcPlanesForPolygonBrushFloat(colbrushf_t *brush)
{
      int i;
      float edge0[3], edge1[3], edge2[3], normal[3], dist, bestdist;
      colpointf_t *p, *p2;

      // FIXME: these probably don't actually need to be normalized if the collision code does not care
      if (brush->numpoints == 3)
      {
            // optimized triangle case
            TriangleNormal(brush->points[0].v, brush->points[1].v, brush->points[2].v, brush->planes[0].normal);
            if (DotProduct(brush->planes[0].normal, brush->planes[0].normal) < 0.0001f)
            {
                  // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
                  brush->numplanes = 0;
                  return;
            }
            else
            {
                  brush->numplanes = 5;
                  brush->numedgedirs = 3;
                  VectorNormalize(brush->planes[0].normal);
                  brush->planes[0].dist = DotProduct(brush->points->v, brush->planes[0].normal);
                  VectorNegate(brush->planes[0].normal, brush->planes[1].normal);
                  brush->planes[1].dist = -brush->planes[0].dist;
                  VectorSubtract(brush->points[2].v, brush->points[0].v, edge0);
                  VectorSubtract(brush->points[0].v, brush->points[1].v, edge1);
                  VectorSubtract(brush->points[1].v, brush->points[2].v, edge2);
                  VectorCopy(edge0, brush->edgedirs[0].v);
                  VectorCopy(edge1, brush->edgedirs[1].v);
                  VectorCopy(edge2, brush->edgedirs[2].v);
#if 1
                  {
                        float projectionnormal[3], projectionedge0[3], projectionedge1[3], projectionedge2[3];
                        int i, best;
                        float dist, bestdist;
                        bestdist = fabs(brush->planes[0].normal[0]);
                        best = 0;
                        for (i = 1;i < 3;i++)
                        {
                              dist = fabs(brush->planes[0].normal[i]);
                              if (bestdist < dist)
                              {
                                    bestdist = dist;
                                    best = i;
                              }
                        }
                        VectorClear(projectionnormal);
                        if (brush->planes[0].normal[best] < 0)
                              projectionnormal[best] = -1;
                        else
                              projectionnormal[best] = 1;
                        VectorCopy(edge0, projectionedge0);
                        VectorCopy(edge1, projectionedge1);
                        VectorCopy(edge2, projectionedge2);
                        projectionedge0[best] = 0;
                        projectionedge1[best] = 0;
                        projectionedge2[best] = 0;
                        CrossProduct(projectionedge0, projectionnormal, brush->planes[2].normal);
                        CrossProduct(projectionedge1, projectionnormal, brush->planes[3].normal);
                        CrossProduct(projectionedge2, projectionnormal, brush->planes[4].normal);
                  }
#else
                  CrossProduct(edge0, brush->planes->normal, brush->planes[2].normal);
                  CrossProduct(edge1, brush->planes->normal, brush->planes[3].normal);
                  CrossProduct(edge2, brush->planes->normal, brush->planes[4].normal);
#endif
                  VectorNormalize(brush->planes[2].normal);
                  VectorNormalize(brush->planes[3].normal);
                  VectorNormalize(brush->planes[4].normal);
                  brush->planes[2].dist = DotProduct(brush->points[2].v, brush->planes[2].normal);
                  brush->planes[3].dist = DotProduct(brush->points[0].v, brush->planes[3].normal);
                  brush->planes[4].dist = DotProduct(brush->points[1].v, brush->planes[4].normal);

                  if (developer_extra.integer)
                  {
                        // validation code
#if 0
                        float temp[3];

                        VectorSubtract(brush->points[0].v, brush->points[1].v, edge0);
                        VectorSubtract(brush->points[2].v, brush->points[1].v, edge1);
                        CrossProduct(edge0, edge1, normal);
                        VectorNormalize(normal);
                        VectorSubtract(normal, brush->planes[0].normal, temp);
                        if (VectorLength(temp) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: TriangleNormal gave wrong answer (%f %f %f != correct answer %f %f %f)\n", brush->planes->normal[0], brush->planes->normal[1], brush->planes->normal[2], normal[0], normal[1], normal[2]);
                        if (fabs(DotProduct(brush->planes[1].normal, brush->planes[0].normal) - -1.0f) > 0.01f || fabs(brush->planes[1].dist - -brush->planes[0].dist) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 1 (%f %f %f %f) is not opposite plane 0 (%f %f %f %f)\n", brush->planes[1].normal[0], brush->planes[1].normal[1], brush->planes[1].normal[2], brush->planes[1].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[0].dist);
#if 0
                        if (fabs(DotProduct(brush->planes[2].normal, brush->planes[0].normal)) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 2 (%f %f %f %f) is not perpendicular to plane 0 (%f %f %f %f)\n", brush->planes[2].normal[0], brush->planes[2].normal[1], brush->planes[2].normal[2], brush->planes[2].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[2].dist);
                        if (fabs(DotProduct(brush->planes[3].normal, brush->planes[0].normal)) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 3 (%f %f %f %f) is not perpendicular to plane 0 (%f %f %f %f)\n", brush->planes[3].normal[0], brush->planes[3].normal[1], brush->planes[3].normal[2], brush->planes[3].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[3].dist);
                        if (fabs(DotProduct(brush->planes[4].normal, brush->planes[0].normal)) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 4 (%f %f %f %f) is not perpendicular to plane 0 (%f %f %f %f)\n", brush->planes[4].normal[0], brush->planes[4].normal[1], brush->planes[4].normal[2], brush->planes[4].dist, brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[4].dist);
                        if (fabs(DotProduct(brush->planes[2].normal, edge0)) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 2 (%f %f %f %f) is not perpendicular to edge 0 (%f %f %f to %f %f %f)\n", brush->planes[2].normal[0], brush->planes[2].normal[1], brush->planes[2].normal[2], brush->planes[2].dist, brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2]);
                        if (fabs(DotProduct(brush->planes[3].normal, edge1)) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 3 (%f %f %f %f) is not perpendicular to edge 1 (%f %f %f to %f %f %f)\n", brush->planes[3].normal[0], brush->planes[3].normal[1], brush->planes[3].normal[2], brush->planes[3].dist, brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2]);
                        if (fabs(DotProduct(brush->planes[4].normal, edge2)) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: plane 4 (%f %f %f %f) is not perpendicular to edge 2 (%f %f %f to %f %f %f)\n", brush->planes[4].normal[0], brush->planes[4].normal[1], brush->planes[4].normal[2], brush->planes[4].dist, brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2]);
#endif
#endif
                        if (fabs(DotProduct(brush->points[0].v, brush->planes[0].normal) - brush->planes[0].dist) > 0.01f || fabs(DotProduct(brush->points[1].v, brush->planes[0].normal) - brush->planes[0].dist) > 0.01f || fabs(DotProduct(brush->points[2].v, brush->planes[0].normal) - brush->planes[0].dist) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: edges (%f %f %f to %f %f %f to %f %f %f) off front plane 0 (%f %f %f %f)\n", brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->planes[0].normal[0], brush->planes[0].normal[1], brush->planes[0].normal[2], brush->planes[0].dist);
                        if (fabs(DotProduct(brush->points[0].v, brush->planes[1].normal) - brush->planes[1].dist) > 0.01f || fabs(DotProduct(brush->points[1].v, brush->planes[1].normal) - brush->planes[1].dist) > 0.01f || fabs(DotProduct(brush->points[2].v, brush->planes[1].normal) - brush->planes[1].dist) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: edges (%f %f %f to %f %f %f to %f %f %f) off back plane 1 (%f %f %f %f)\n", brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->planes[1].normal[0], brush->planes[1].normal[1], brush->planes[1].normal[2], brush->planes[1].dist);
                        if (fabs(DotProduct(brush->points[2].v, brush->planes[2].normal) - brush->planes[2].dist) > 0.01f || fabs(DotProduct(brush->points[0].v, brush->planes[2].normal) - brush->planes[2].dist) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: edge 0 (%f %f %f to %f %f %f) off front plane 2 (%f %f %f %f)\n", brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->planes[2].normal[0], brush->planes[2].normal[1], brush->planes[2].normal[2], brush->planes[2].dist);
                        if (fabs(DotProduct(brush->points[0].v, brush->planes[3].normal) - brush->planes[3].dist) > 0.01f || fabs(DotProduct(brush->points[1].v, brush->planes[3].normal) - brush->planes[3].dist) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: edge 0 (%f %f %f to %f %f %f) off front plane 2 (%f %f %f %f)\n", brush->points[0].v[0], brush->points[0].v[1], brush->points[0].v[2], brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->planes[3].normal[0], brush->planes[3].normal[1], brush->planes[3].normal[2], brush->planes[3].dist);
                        if (fabs(DotProduct(brush->points[1].v, brush->planes[4].normal) - brush->planes[4].dist) > 0.01f || fabs(DotProduct(brush->points[2].v, brush->planes[4].normal) - brush->planes[4].dist) > 0.01f)
                              Con_DPrintf("Collision_CalcPlanesForPolygonBrushFloat: edge 0 (%f %f %f to %f %f %f) off front plane 2 (%f %f %f %f)\n", brush->points[1].v[0], brush->points[1].v[1], brush->points[1].v[2], brush->points[2].v[0], brush->points[2].v[1], brush->points[2].v[2], brush->planes[4].normal[0], brush->planes[4].normal[1], brush->planes[4].normal[2], brush->planes[4].dist);
                  }
            }
      }
      else
      {
            // choose best surface normal for polygon's plane
            bestdist = 0;
            for (i = 0, p = brush->points + 1;i < brush->numpoints - 2;i++, p++)
            {
                  VectorSubtract(p[-1].v, p[0].v, edge0);
                  VectorSubtract(p[1].v, p[0].v, edge1);
                  CrossProduct(edge0, edge1, normal);
                  //TriangleNormal(p[-1].v, p[0].v, p[1].v, normal);
                  dist = DotProduct(normal, normal);
                  if (i == 0 || bestdist < dist)
                  {
                        bestdist = dist;
                        VectorCopy(normal, brush->planes->normal);
                  }
            }
            if (bestdist < 0.0001f)
            {
                  // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
                  brush->numplanes = 0;
                  return;
            }
            else
            {
                  brush->numplanes = brush->numpoints + 2;
                  VectorNormalize(brush->planes->normal);
                  brush->planes->dist = DotProduct(brush->points->v, brush->planes->normal);

                  // negate plane to create other side
                  VectorNegate(brush->planes[0].normal, brush->planes[1].normal);
                  brush->planes[1].dist = -brush->planes[0].dist;
                  for (i = 0, p = brush->points + (brush->numpoints - 1), p2 = brush->points;i < brush->numpoints;i++, p = p2, p2++)
                  {
                        VectorSubtract(p->v, p2->v, edge0);
                        CrossProduct(edge0, brush->planes->normal, brush->planes[i + 2].normal);
                        VectorNormalize(brush->planes[i + 2].normal);
                        brush->planes[i + 2].dist = DotProduct(p->v, brush->planes[i + 2].normal);
                  }
            }
      }

      if (developer_extra.integer)
      {
            // validity check - will be disabled later
            Collision_ValidateBrush(brush);
            for (i = 0;i < brush->numplanes;i++)
            {
                  int j;
                  for (j = 0, p = brush->points;j < brush->numpoints;j++, p++)
                        if (DotProduct(p->v, brush->planes[i].normal) > brush->planes[i].dist + COLLISION_PLANE_DIST_EPSILON)
                              Con_DPrintf("Error in brush plane generation, plane %i\n", i);
            }
      }
}

colbrushf_t *Collision_AllocBrushFromPermanentPolygonFloat(mempool_t *mempool, int numpoints, float *points, int supercontents, int q3surfaceflags, const texture_t *texture)
{
      colbrushf_t *brush;
      brush = (colbrushf_t *)Mem_Alloc(mempool, sizeof(colbrushf_t) + sizeof(colplanef_t) * (numpoints + 2) + sizeof(colpointf_t) * numpoints);
      brush->isaabb = false;
      brush->hasaabbplanes = false;
      brush->supercontents = supercontents;
      brush->numpoints = numpoints;
      brush->numedgedirs = numpoints;
      brush->numplanes = numpoints + 2;
      brush->planes = (colplanef_t *)(brush + 1);
      brush->points = (colpointf_t *)points;
      brush->edgedirs = (colpointf_t *)(brush->planes + brush->numplanes);
      brush->q3surfaceflags = q3surfaceflags;
      brush->texture = texture;
      Sys_Error("Collision_AllocBrushFromPermanentPolygonFloat: FIXME: this code needs to be updated to generate a mesh...");
      return brush;
}

// NOTE: start and end of each brush pair must have same numplanes/numpoints
void Collision_TraceBrushBrushFloat(trace_t *trace, const colbrushf_t *trace_start, const colbrushf_t *trace_end, const colbrushf_t *other_start, const colbrushf_t *other_end)
{
      int nplane, nplane2, nedge1, nedge2, hitq3surfaceflags = 0;
      int tracenumedgedirs = trace_start->numedgedirs;
      //int othernumedgedirs = other_start->numedgedirs;
      int tracenumpoints = trace_start->numpoints;
      int othernumpoints = other_start->numpoints;
      int numplanes1 = other_start->numplanes;
      int numplanes2 = numplanes1 + trace_start->numplanes;
      int numplanes3 = numplanes2 + trace_start->numedgedirs * other_start->numedgedirs * 2;
      vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1;
      vec4_t startplane;
      vec4_t endplane;
      vec4_t newimpactplane;
      const texture_t *hittexture = NULL;
      vec_t startdepth = 1;
      vec3_t startdepthnormal;

      VectorClear(startdepthnormal);
      Vector4Clear(newimpactplane);

      // fast case for AABB vs compiled brushes (which begin with AABB planes and also have precomputed bevels for AABB collisions)
      if (trace_start->isaabb && other_start->hasaabbplanes)
            numplanes3 = numplanes2 = numplanes1;

      // Separating Axis Theorem:
      // if a supporting vector (plane normal) can be found that separates two
      // objects, they are not colliding.
      //
      // Minkowski Sum:
      // reduce the size of one object to a point while enlarging the other to
      // represent the space that point can not occupy.
      //
      // try every plane we can construct between the two brushes and measure
      // the distance between them.
      for (nplane = 0;nplane < numplanes3;nplane++)
      {
            if (nplane < numplanes1)
            {
                  nplane2 = nplane;
                  VectorCopy(other_start->planes[nplane2].normal, startplane);
                  VectorCopy(other_end->planes[nplane2].normal, endplane);
            }
            else if (nplane < numplanes2)
            {
                  nplane2 = nplane - numplanes1;
                  VectorCopy(trace_start->planes[nplane2].normal, startplane);
                  VectorCopy(trace_end->planes[nplane2].normal, endplane);
            }
            else
            {
                  // pick an edgedir from each brush and cross them
                  nplane2 = nplane - numplanes2;
                  nedge1 = nplane2 >> 1;
                  nedge2 = nedge1 / tracenumedgedirs;
                  nedge1 -= nedge2 * tracenumedgedirs;
                  if (nplane2 & 1)
                  {
                        CrossProduct(trace_start->edgedirs[nedge1].v, other_start->edgedirs[nedge2].v, startplane);
                        if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2)
                              continue; // degenerate crossproduct
                        CrossProduct(trace_end->edgedirs[nedge1].v, other_end->edgedirs[nedge2].v, endplane);
                        if (VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2)
                              continue; // degenerate crossproduct
                  }
                  else
                  {
                        CrossProduct(other_start->edgedirs[nedge2].v, trace_start->edgedirs[nedge1].v, startplane);
                        if (VectorLength2(startplane) < COLLISION_EDGECROSS_MINLENGTH2)
                              continue; // degenerate crossproduct
                        CrossProduct(other_end->edgedirs[nedge2].v, trace_end->edgedirs[nedge1].v, endplane);
                        if (VectorLength2(endplane) < COLLISION_EDGECROSS_MINLENGTH2)
                              continue; // degenerate crossproduct
                  }
                  VectorNormalize(startplane);
                  VectorNormalize(endplane);
            }
            startplane[3] = furthestplanedist_float(startplane, other_start->points, othernumpoints);
            endplane[3] = furthestplanedist_float(startplane, other_end->points, othernumpoints);
            startdist = nearestplanedist_float(startplane, trace_start->points, tracenumpoints) - startplane[3] - collision_startnudge.value;
            enddist = nearestplanedist_float(endplane, trace_end->points, tracenumpoints) - endplane[3] - collision_endnudge.value;
            //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist));

            // aside from collisions, this is also used for error correction
            if (startdist < collision_impactnudge.value && nplane < numplanes1 && (startdepth < startdist || startdepth == 1))
            {
                  startdepth = startdist;
                  VectorCopy(startplane, startdepthnormal);
            }

            if (startdist > enddist)
            {
                  // moving into brush
                  if (enddist >= collision_enternudge.value)
                        return;
                  if (startdist > 0)
                  {
                        // enter
                        imove = 1 / (startdist - enddist);
                        f = (startdist - collision_enternudge.value) * imove;
                        if (f < 0)
                              f = 0;
                        // check if this will reduce the collision time range
                        if (enterfrac < f)
                        {
                              // reduced collision time range
                              enterfrac = f;
                              // if the collision time range is now empty, no collision
                              if (enterfrac > leavefrac)
                                    return;
                              // if the collision would be further away than the trace's
                              // existing collision data, we don't care about this
                              // collision
                              if (enterfrac > trace->realfraction)
                                    return;
                              // calculate the nudged fraction and impact normal we'll
                              // need if we accept this collision later
                              enterfrac2 = (startdist - collision_impactnudge.value) * imove;
                              ie = 1.0f - enterfrac;
                              newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac;
                              newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac;
                              newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac;
                              newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac;
                              if (nplane < numplanes1)
                              {
                                    // use the plane from other
                                    nplane2 = nplane;
                                    hitq3surfaceflags = other_start->planes[nplane2].q3surfaceflags;
                                    hittexture = other_start->planes[nplane2].texture;
                              }
                              else if (nplane < numplanes2)
                              {
                                    // use the plane from trace
                                    nplane2 = nplane - numplanes1;
                                    hitq3surfaceflags = trace_start->planes[nplane2].q3surfaceflags;
                                    hittexture = trace_start->planes[nplane2].texture;
                              }
                              else
                              {
                                    hitq3surfaceflags = other_start->q3surfaceflags;
                                    hittexture = other_start->texture;
                              }
                        }
                  }
            }
            else
            {
                  // moving out of brush
                  if (startdist > 0)
                        return;
                  if (enddist > 0)
                  {
                        // leave
                        f = (startdist + collision_leavenudge.value) / (startdist - enddist);
                        if (f > 1)
                              f = 1;
                        // check if this will reduce the collision time range
                        if (leavefrac > f)
                        {
                              // reduced collision time range
                              leavefrac = f;
                              // if the collision time range is now empty, no collision
                              if (enterfrac > leavefrac)
                                    return;
                        }
                  }
            }
      }

      // at this point we know the trace overlaps the brush because it was not
      // rejected at any point in the loop above

      // see if the trace started outside the brush or not
      if (enterfrac > -1)
      {
            // started outside, and overlaps, therefore there is a collision here
            // store out the impact information
            if (trace->hitsupercontentsmask & other_start->supercontents)
            {
                  trace->hitsupercontents = other_start->supercontents;
                  trace->hitq3surfaceflags = hitq3surfaceflags;
                  trace->hittexture = hittexture;
                  trace->realfraction = bound(0, enterfrac, 1);
                  trace->fraction = bound(0, enterfrac2, 1);
                  if (collision_prefernudgedfraction.integer)
                        trace->realfraction = trace->fraction;
                  VectorCopy(newimpactplane, trace->plane.normal);
                  trace->plane.dist = newimpactplane[3];
            }
      }
      else
      {
            // started inside, update startsolid and friends
            trace->startsupercontents |= other_start->supercontents;
            if (trace->hitsupercontentsmask & other_start->supercontents)
            {
                  trace->startsolid = true;
                  if (leavefrac < 1)
                        trace->allsolid = true;
                  VectorCopy(newimpactplane, trace->plane.normal);
                  trace->plane.dist = newimpactplane[3];
                  if (trace->startdepth > startdepth)
                  {
                        trace->startdepth = startdepth;
                        VectorCopy(startdepthnormal, trace->startdepthnormal);
                  }
            }
      }
}

// NOTE: start and end of each brush pair must have same numplanes/numpoints
void Collision_TraceLineBrushFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const colbrushf_t *other_start, const colbrushf_t *other_end)
{
      int nplane, hitq3surfaceflags = 0;
      int numplanes = other_start->numplanes;
      vec_t enterfrac = -1, leavefrac = 1, startdist, enddist, ie, f, imove, enterfrac2 = -1;
      vec4_t startplane;
      vec4_t endplane;
      vec4_t newimpactplane;
      const texture_t *hittexture = NULL;
      vec_t startdepth = 1;
      vec3_t startdepthnormal;

      if (collision_debug_tracelineasbox.integer)
      {
            colboxbrushf_t thisbrush_start, thisbrush_end;
            Collision_BrushForBox(&thisbrush_start, linestart, linestart, 0, 0, NULL);
            Collision_BrushForBox(&thisbrush_end, lineend, lineend, 0, 0, NULL);
            Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, other_start, other_end);
            return;
      }

      VectorClear(startdepthnormal);
      Vector4Clear(newimpactplane);

      // Separating Axis Theorem:
      // if a supporting vector (plane normal) can be found that separates two
      // objects, they are not colliding.
      //
      // Minkowski Sum:
      // reduce the size of one object to a point while enlarging the other to
      // represent the space that point can not occupy.
      //
      // try every plane we can construct between the two brushes and measure
      // the distance between them.
      for (nplane = 0;nplane < numplanes;nplane++)
      {
            VectorCopy(other_start->planes[nplane].normal, startplane);
            startplane[3] = other_start->planes[nplane].dist;
            VectorCopy(other_end->planes[nplane].normal, endplane);
            endplane[3] = other_end->planes[nplane].dist;
            startdist = DotProduct(linestart, startplane) - startplane[3] - collision_startnudge.value;
            enddist = DotProduct(lineend, endplane) - endplane[3] - collision_endnudge.value;
            //Con_Printf("%c%i: startdist = %f, enddist = %f, startdist / (startdist - enddist) = %f\n", nplane2 != nplane ? 'b' : 'a', nplane2, startdist, enddist, startdist / (startdist - enddist));

            // aside from collisions, this is also used for error correction
            if (startdist < collision_impactnudge.value && (startdepth < startdist || startdepth == 1))
            {
                  startdepth = startdist;
                  VectorCopy(startplane, startdepthnormal);
            }

            if (startdist > enddist)
            {
                  // moving into brush
                  if (enddist >= collision_enternudge.value)
                        return;
                  if (startdist > 0)
                  {
                        // enter
                        imove = 1 / (startdist - enddist);
                        f = (startdist - collision_enternudge.value) * imove;
                        if (f < 0)
                              f = 0;
                        // check if this will reduce the collision time range
                        if (enterfrac < f)
                        {
                              // reduced collision time range
                              enterfrac = f;
                              // if the collision time range is now empty, no collision
                              if (enterfrac > leavefrac)
                                    return;
                              // if the collision would be further away than the trace's
                              // existing collision data, we don't care about this
                              // collision
                              if (enterfrac > trace->realfraction)
                                    return;
                              // calculate the nudged fraction and impact normal we'll
                              // need if we accept this collision later
                              enterfrac2 = (startdist - collision_impactnudge.value) * imove;
                              ie = 1.0f - enterfrac;
                              newimpactplane[0] = startplane[0] * ie + endplane[0] * enterfrac;
                              newimpactplane[1] = startplane[1] * ie + endplane[1] * enterfrac;
                              newimpactplane[2] = startplane[2] * ie + endplane[2] * enterfrac;
                              newimpactplane[3] = startplane[3] * ie + endplane[3] * enterfrac;
                              hitq3surfaceflags = other_start->planes[nplane].q3surfaceflags;
                              hittexture = other_start->planes[nplane].texture;
                        }
                  }
            }
            else
            {
                  // moving out of brush
                  if (startdist > 0)
                        return;
                  if (enddist > 0)
                  {
                        // leave
                        f = (startdist + collision_leavenudge.value) / (startdist - enddist);
                        if (f > 1)
                              f = 1;
                        // check if this will reduce the collision time range
                        if (leavefrac > f)
                        {
                              // reduced collision time range
                              leavefrac = f;
                              // if the collision time range is now empty, no collision
                              if (enterfrac > leavefrac)
                                    return;
                        }
                  }
            }
      }

      // at this point we know the trace overlaps the brush because it was not
      // rejected at any point in the loop above

      // see if the trace started outside the brush or not
      if (enterfrac > -1)
      {
            // started outside, and overlaps, therefore there is a collision here
            // store out the impact information
            if (trace->hitsupercontentsmask & other_start->supercontents)
            {
                  trace->hitsupercontents = other_start->supercontents;
                  trace->hitq3surfaceflags = hitq3surfaceflags;
                  trace->hittexture = hittexture;
                  trace->realfraction = bound(0, enterfrac, 1);
                  trace->fraction = bound(0, enterfrac2, 1);
                  if (collision_prefernudgedfraction.integer)
                        trace->realfraction = trace->fraction;
                  VectorCopy(newimpactplane, trace->plane.normal);
                  trace->plane.dist = newimpactplane[3];
            }
      }
      else
      {
            // started inside, update startsolid and friends
            trace->startsupercontents |= other_start->supercontents;
            if (trace->hitsupercontentsmask & other_start->supercontents)
            {
                  trace->startsolid = true;
                  if (leavefrac < 1)
                        trace->allsolid = true;
                  VectorCopy(newimpactplane, trace->plane.normal);
                  trace->plane.dist = newimpactplane[3];
                  if (trace->startdepth > startdepth)
                  {
                        trace->startdepth = startdepth;
                        VectorCopy(startdepthnormal, trace->startdepthnormal);
                  }
            }
      }
}

qboolean Collision_PointInsideBrushFloat(const vec3_t point, const colbrushf_t *brush)
{
      int nplane;
      const colplanef_t *plane;

      if (!BoxesOverlap(point, point, brush->mins, brush->maxs))
            return false;
      for (nplane = 0, plane = brush->planes;nplane < brush->numplanes;nplane++, plane++)
            if (DotProduct(plane->normal, point) > plane->dist)
                  return false;
      return true;
}

void Collision_TracePointBrushFloat(trace_t *trace, const vec3_t point, const colbrushf_t *thatbrush)
{
      if (!Collision_PointInsideBrushFloat(point, thatbrush))
            return;

      trace->startsupercontents |= thatbrush->supercontents;
      if (trace->hitsupercontentsmask & thatbrush->supercontents)
      {
            trace->startsolid = true;
            trace->allsolid = true;
      }
}

void Collision_SnapCopyPoints(int numpoints, const colpointf_t *in, colpointf_t *out, float fractionprecision, float invfractionprecision)
{
      int i;
      for (i = 0;i < numpoints;i++)
      {
            out[i].v[0] = floor(in[i].v[0] * fractionprecision + 0.5f) * invfractionprecision;
            out[i].v[1] = floor(in[i].v[1] * fractionprecision + 0.5f) * invfractionprecision;
            out[i].v[2] = floor(in[i].v[2] * fractionprecision + 0.5f) * invfractionprecision;
      }
}

void Collision_TraceBrushTriangleMeshFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
      int i;
      colpointf_t points[3];
      colpointf_t edgedirs[3];
      colplanef_t planes[5];
      colbrushf_t brush;
      memset(&brush, 0, sizeof(brush));
      brush.isaabb = false;
      brush.hasaabbplanes = false;
      brush.numpoints = 3;
      brush.numedgedirs = 3;
      brush.numplanes = 5;
      brush.points = points;
      brush.edgedirs = edgedirs;
      brush.planes = planes;
      brush.supercontents = supercontents;
      brush.q3surfaceflags = q3surfaceflags;
      brush.texture = texture;
      for (i = 0;i < brush.numplanes;i++)
      {
            brush.planes[i].q3surfaceflags = q3surfaceflags;
            brush.planes[i].texture = texture;
      }
      if(stride > 0)
      {
            int k, cnt, tri;
            cnt = (numtriangles + stride - 1) / stride;
            for(i = 0; i < cnt; ++i)
            {
                  if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs))
                  {
                        for(k = 0; k < stride; ++k)
                        {
                              tri = i * stride + k;
                              if(tri >= numtriangles)
                                    break;
                              VectorCopy(vertex3f + element3i[tri * 3 + 0] * 3, points[0].v);
                              VectorCopy(vertex3f + element3i[tri * 3 + 1] * 3, points[1].v);
                              VectorCopy(vertex3f + element3i[tri * 3 + 2] * 3, points[2].v);
                              Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
                              Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
                              Collision_CalcPlanesForPolygonBrushFloat(&brush);
                              //Collision_PrintBrushAsQHull(&brush, "brush");
                              Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
                        }
                  }
            }
      }
      else if(stride == 0)
      {
            for (i = 0;i < numtriangles;i++, element3i += 3)
            {
                  if (TriangleOverlapsBox(vertex3f + element3i[0]*3, vertex3f + element3i[1]*3, vertex3f + element3i[2]*3, segmentmins, segmentmaxs))
                  {
                        VectorCopy(vertex3f + element3i[0] * 3, points[0].v);
                        VectorCopy(vertex3f + element3i[1] * 3, points[1].v);
                        VectorCopy(vertex3f + element3i[2] * 3, points[2].v);
                        Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
                        Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
                        Collision_CalcPlanesForPolygonBrushFloat(&brush);
                        //Collision_PrintBrushAsQHull(&brush, "brush");
                        Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
                  }
            }
      }
      else
      {
            for (i = 0;i < numtriangles;i++, element3i += 3)
            {
                  VectorCopy(vertex3f + element3i[0] * 3, points[0].v);
                  VectorCopy(vertex3f + element3i[1] * 3, points[1].v);
                  VectorCopy(vertex3f + element3i[2] * 3, points[2].v);
                  Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
                  Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
                  Collision_CalcPlanesForPolygonBrushFloat(&brush);
                  //Collision_PrintBrushAsQHull(&brush, "brush");
                  Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
            }
      }
}

void Collision_TraceLineTriangleMeshFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, int numtriangles, const int *element3i, const float *vertex3f, int stride, float *bbox6f, int supercontents, int q3surfaceflags, const texture_t *texture, const vec3_t segmentmins, const vec3_t segmentmaxs)
{
      int i;
      // FIXME: snap vertices?
      if(stride > 0)
      {
            int k, cnt, tri;
            cnt = (numtriangles + stride - 1) / stride;
            for(i = 0; i < cnt; ++i)
            {
                  if(BoxesOverlap(bbox6f + i * 6, bbox6f + i * 6 + 3, segmentmins, segmentmaxs))
                  {
                        for(k = 0; k < stride; ++k)
                        {
                              tri = i * stride + k;
                              if(tri >= numtriangles)
                                    break;
                              Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[tri * 3 + 0] * 3, vertex3f + element3i[tri * 3 + 1] * 3, vertex3f + element3i[tri * 3 + 2] * 3, supercontents, q3surfaceflags, texture);
                        }
                  }
            }
      }
      else
      {
            for (i = 0;i < numtriangles;i++, element3i += 3)
                  Collision_TraceLineTriangleFloat(trace, linestart, lineend, vertex3f + element3i[0] * 3, vertex3f + element3i[1] * 3, vertex3f + element3i[2] * 3, supercontents, q3surfaceflags, texture);
      }
}

void Collision_TraceBrushTriangleFloat(trace_t *trace, const colbrushf_t *thisbrush_start, const colbrushf_t *thisbrush_end, const float *v0, const float *v1, const float *v2, int supercontents, int q3surfaceflags, const texture_t *texture)
{
      int i;
      colpointf_t points[3];
      colpointf_t edgedirs[3];
      colplanef_t planes[5];
      colbrushf_t brush;
      memset(&brush, 0, sizeof(brush));
      brush.isaabb = false;
      brush.hasaabbplanes = false;
      brush.numpoints = 3;
      brush.numedgedirs = 3;
      brush.numplanes = 5;
      brush.points = points;
      brush.edgedirs = edgedirs;
      brush.planes = planes;
      brush.supercontents = supercontents;
      brush.q3surfaceflags = q3surfaceflags;
      brush.texture = texture;
      for (i = 0;i < brush.numplanes;i++)
      {
            brush.planes[i].q3surfaceflags = q3surfaceflags;
            brush.planes[i].texture = texture;
      }
      VectorCopy(v0, points[0].v);
      VectorCopy(v1, points[1].v);
      VectorCopy(v2, points[2].v);
      Collision_SnapCopyPoints(brush.numpoints, points, points, COLLISION_SNAPSCALE, COLLISION_SNAP);
      Collision_CalcEdgeDirsForPolygonBrushFloat(&brush);
      Collision_CalcPlanesForPolygonBrushFloat(&brush);
      //Collision_PrintBrushAsQHull(&brush, "brush");
      Collision_TraceBrushBrushFloat(trace, thisbrush_start, thisbrush_end, &brush, &brush);
}

void Collision_BrushForBox(colboxbrushf_t *boxbrush, const vec3_t mins, const vec3_t maxs, int supercontents, int q3surfaceflags, const texture_t *texture)
{
      int i;
      memset(boxbrush, 0, sizeof(*boxbrush));
      boxbrush->brush.isaabb = true;
      boxbrush->brush.hasaabbplanes = true;
      boxbrush->brush.points = boxbrush->points;
      boxbrush->brush.edgedirs = boxbrush->edgedirs;
      boxbrush->brush.planes = boxbrush->planes;
      boxbrush->brush.supercontents = supercontents;
      boxbrush->brush.q3surfaceflags = q3surfaceflags;
      boxbrush->brush.texture = texture;
      if (VectorCompare(mins, maxs))
      {
            // point brush
            boxbrush->brush.numpoints = 1;
            boxbrush->brush.numedgedirs = 0;
            boxbrush->brush.numplanes = 0;
            VectorCopy(mins, boxbrush->brush.points[0].v);
      }
      else
      {
            boxbrush->brush.numpoints = 8;
            boxbrush->brush.numedgedirs = 3;
            boxbrush->brush.numplanes = 6;
            // there are 8 points on a box
            // there are 3 edgedirs on a box (both signs are tested in collision)
            // there are 6 planes on a box
            VectorSet(boxbrush->brush.points[0].v, mins[0], mins[1], mins[2]);
            VectorSet(boxbrush->brush.points[1].v, maxs[0], mins[1], mins[2]);
            VectorSet(boxbrush->brush.points[2].v, mins[0], maxs[1], mins[2]);
            VectorSet(boxbrush->brush.points[3].v, maxs[0], maxs[1], mins[2]);
            VectorSet(boxbrush->brush.points[4].v, mins[0], mins[1], maxs[2]);
            VectorSet(boxbrush->brush.points[5].v, maxs[0], mins[1], maxs[2]);
            VectorSet(boxbrush->brush.points[6].v, mins[0], maxs[1], maxs[2]);
            VectorSet(boxbrush->brush.points[7].v, maxs[0], maxs[1], maxs[2]);
            VectorSet(boxbrush->brush.edgedirs[0].v, 1, 0, 0);
            VectorSet(boxbrush->brush.edgedirs[1].v, 0, 1, 0);
            VectorSet(boxbrush->brush.edgedirs[2].v, 0, 0, 1);
            VectorSet(boxbrush->brush.planes[0].normal, -1,  0,  0);boxbrush->brush.planes[0].dist = -mins[0];
            VectorSet(boxbrush->brush.planes[1].normal,  1,  0,  0);boxbrush->brush.planes[1].dist =  maxs[0];
            VectorSet(boxbrush->brush.planes[2].normal,  0, -1,  0);boxbrush->brush.planes[2].dist = -mins[1];
            VectorSet(boxbrush->brush.planes[3].normal,  0,  1,  0);boxbrush->brush.planes[3].dist =  maxs[1];
            VectorSet(boxbrush->brush.planes[4].normal,  0,  0, -1);boxbrush->brush.planes[4].dist = -mins[2];
            VectorSet(boxbrush->brush.planes[5].normal,  0,  0,  1);boxbrush->brush.planes[5].dist =  maxs[2];
            for (i = 0;i < 6;i++)
            {
                  boxbrush->brush.planes[i].q3surfaceflags = q3surfaceflags;
                  boxbrush->brush.planes[i].texture = texture;
            }
      }
      boxbrush->brush.supercontents = supercontents;
      boxbrush->brush.q3surfaceflags = q3surfaceflags;
      boxbrush->brush.texture = texture;
      VectorSet(boxbrush->brush.mins, mins[0] - 1, mins[1] - 1, mins[2] - 1);
      VectorSet(boxbrush->brush.maxs, maxs[0] + 1, maxs[1] + 1, maxs[2] + 1);
      //Collision_ValidateBrush(&boxbrush->brush);
}

void Collision_ClipTrace_BrushBox(trace_t *trace, const vec3_t cmins, const vec3_t cmaxs, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask, int supercontents, int q3surfaceflags, texture_t *texture)
{
      colboxbrushf_t boxbrush, thisbrush_start, thisbrush_end;
      vec3_t startmins, startmaxs, endmins, endmaxs;

      // create brushes for the collision
      VectorAdd(start, mins, startmins);
      VectorAdd(start, maxs, startmaxs);
      VectorAdd(end, mins, endmins);
      VectorAdd(end, maxs, endmaxs);
      Collision_BrushForBox(&boxbrush, cmins, cmaxs, supercontents, q3surfaceflags, texture);
      Collision_BrushForBox(&thisbrush_start, startmins, startmaxs, 0, 0, NULL);
      Collision_BrushForBox(&thisbrush_end, endmins, endmaxs, 0, 0, NULL);

      memset(trace, 0, sizeof(trace_t));
      trace->hitsupercontentsmask = hitsupercontentsmask;
      trace->fraction = 1;
      trace->realfraction = 1;
      trace->allsolid = true;
      Collision_TraceBrushBrushFloat(trace, &thisbrush_start.brush, &thisbrush_end.brush, &boxbrush.brush, &boxbrush.brush);
}

//pseudocode for detecting line/sphere overlap without calculating an impact point
//linesphereorigin = sphereorigin - linestart;linediff = lineend - linestart;linespherefrac = DotProduct(linesphereorigin, linediff) / DotProduct(linediff, linediff);return VectorLength2(linesphereorigin - bound(0, linespherefrac, 1) * linediff) >= sphereradius*sphereradius;

// LordHavoc: currently unused, but tested
// note: this can be used for tracing a moving sphere vs a stationary sphere,
// by simply adding the moving sphere's radius to the sphereradius parameter,
// all the results are correct (impactpoint, impactnormal, and fraction)
float Collision_ClipTrace_Line_Sphere(double *linestart, double *lineend, double *sphereorigin, double sphereradius, double *impactpoint, double *impactnormal)
{
      double dir[3], scale, v[3], deviationdist, impactdist, linelength;
      // make sure the impactpoint and impactnormal are valid even if there is
      // no collision
      VectorCopy(lineend, impactpoint);
      VectorClear(impactnormal);
      // calculate line direction
      VectorSubtract(lineend, linestart, dir);
      // normalize direction
      linelength = VectorLength(dir);
      if (linelength)
      {
            scale = 1.0 / linelength;
            VectorScale(dir, scale, dir);
      }
      // this dotproduct calculates the distance along the line at which the
      // sphere origin is (nearest point to the sphere origin on the line)
      impactdist = DotProduct(sphereorigin, dir) - DotProduct(linestart, dir);
      // calculate point on line at that distance, and subtract the
      // sphereorigin from it, so we have a vector to measure for the distance
      // of the line from the sphereorigin (deviation, how off-center it is)
      VectorMA(linestart, impactdist, dir, v);
      VectorSubtract(v, sphereorigin, v);
      deviationdist = VectorLength2(v);
      // if outside the radius, it's a miss for sure
      // (we do this comparison using squared radius to avoid a sqrt)
      if (deviationdist > sphereradius*sphereradius)
            return 1; // miss (off to the side)
      // nudge back to find the correct impact distance
      impactdist -= sphereradius - deviationdist/sphereradius;
      if (impactdist >= linelength)
            return 1; // miss (not close enough)
      if (impactdist < 0)
            return 1; // miss (linestart is past or inside sphere)
      // calculate new impactpoint
      VectorMA(linestart, impactdist, dir, impactpoint);
      // calculate impactnormal (surface normal at point of impact)
      VectorSubtract(impactpoint, sphereorigin, impactnormal);
      // normalize impactnormal
      VectorNormalize(impactnormal);
      // return fraction of movement distance
      return impactdist / linelength;
}

void Collision_TraceLineTriangleFloat(trace_t *trace, const vec3_t linestart, const vec3_t lineend, const float *point0, const float *point1, const float *point2, int supercontents, int q3surfaceflags, const texture_t *texture)
{
#if 1
      // more optimized
      float d1, d2, d, f, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, faceplanenormallength2, edge01[3], edge21[3], edge02[3];

      // this function executes:
      // 32 ops when line starts behind triangle
      // 38 ops when line ends infront of triangle
      // 43 ops when line fraction is already closer than this triangle
      // 72 ops when line is outside edge 01
      // 92 ops when line is outside edge 21
      // 115 ops when line is outside edge 02
      // 123 ops when line impacts triangle and updates trace results

      // this code is designed for clockwise triangles, conversion to
      // counterclockwise would require swapping some things around...
      // it is easier to simply swap the point0 and point2 parameters to this
      // function when calling it than it is to rewire the internals.

      // calculate the faceplanenormal of the triangle, this represents the front side
      // 15 ops
      VectorSubtract(point0, point1, edge01);
      VectorSubtract(point2, point1, edge21);
      CrossProduct(edge01, edge21, faceplanenormal);
      // there's no point in processing a degenerate triangle (GIGO - Garbage In, Garbage Out)
      // 6 ops
      faceplanenormallength2 = DotProduct(faceplanenormal, faceplanenormal);
      if (faceplanenormallength2 < 0.0001f)
            return;
      // calculate the distance
      // 5 ops
      faceplanedist = DotProduct(point0, faceplanenormal);

      // if start point is on the back side there is no collision
      // (we don't care about traces going through the triangle the wrong way)

      // calculate the start distance
      // 6 ops
      d1 = DotProduct(faceplanenormal, linestart);
      if (d1 <= faceplanedist)
            return;

      // calculate the end distance
      // 6 ops
      d2 = DotProduct(faceplanenormal, lineend);
      // if both are in front, there is no collision
      if (d2 >= faceplanedist)
            return;

      // from here on we know d1 is >= 0 and d2 is < 0
      // this means the line starts infront and ends behind, passing through it

      // calculate the recipricol of the distance delta,
      // so we can use it multiple times cheaply (instead of division)
      // 2 ops
      d = 1.0f / (d1 - d2);
      // calculate the impact fraction by taking the start distance (> 0)
      // and subtracting the face plane distance (this is the distance of the
      // triangle along that same normal)
      // then multiply by the recipricol distance delta
      // 2 ops
      f = (d1 - faceplanedist) * d;
      // skip out if this impact is further away than previous ones
      // 1 ops
      if (f > trace->realfraction)
            return;
      // calculate the perfect impact point for classification of insidedness
      // 9 ops
      impact[0] = linestart[0] + f * (lineend[0] - linestart[0]);
      impact[1] = linestart[1] + f * (lineend[1] - linestart[1]);
      impact[2] = linestart[2] + f * (lineend[2] - linestart[2]);

      // calculate the edge normal and reject if impact is outside triangle
      // (an edge normal faces away from the triangle, to get the desired normal
      //  a crossproduct with the faceplanenormal is used, and because of the way
      // the insidedness comparison is written it does not need to be normalized)

      // first use the two edges from the triangle plane math
      // the other edge only gets calculated if the point survives that long

      // 20 ops
      CrossProduct(edge01, faceplanenormal, edgenormal);
      if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal))
            return;

      // 20 ops
      CrossProduct(faceplanenormal, edge21, edgenormal);
      if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal))
            return;

      // 23 ops
      VectorSubtract(point0, point2, edge02);
      CrossProduct(faceplanenormal, edge02, edgenormal);
      if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
            return;

      // 8 ops (rare)

      // store the new trace fraction
      trace->realfraction = f;

      // calculate a nudged fraction to keep it out of the surface
      // (the main fraction remains perfect)
      trace->fraction = f - collision_impactnudge.value * d;

      if (collision_prefernudgedfraction.integer)
            trace->realfraction = trace->fraction;

      // store the new trace plane (because collisions only happen from
      // the front this is always simply the triangle normal, never flipped)
      d = 1.0 / sqrt(faceplanenormallength2);
      VectorScale(faceplanenormal, d, trace->plane.normal);
      trace->plane.dist = faceplanedist * d;

      trace->hitsupercontents = supercontents;
      trace->hitq3surfaceflags = q3surfaceflags;
      trace->hittexture = texture;
#else
      float d1, d2, d, f, fnudged, impact[3], edgenormal[3], faceplanenormal[3], faceplanedist, edge[3];

      // this code is designed for clockwise triangles, conversion to
      // counterclockwise would require swapping some things around...
      // it is easier to simply swap the point0 and point2 parameters to this
      // function when calling it than it is to rewire the internals.

      // calculate the unnormalized faceplanenormal of the triangle,
      // this represents the front side
      TriangleNormal(point0, point1, point2, faceplanenormal);
      // there's no point in processing a degenerate triangle
      // (GIGO - Garbage In, Garbage Out)
      if (DotProduct(faceplanenormal, faceplanenormal) < 0.0001f)
            return;
      // calculate the unnormalized distance
      faceplanedist = DotProduct(point0, faceplanenormal);

      // calculate the unnormalized start distance
      d1 = DotProduct(faceplanenormal, linestart) - faceplanedist;
      // if start point is on the back side there is no collision
      // (we don't care about traces going through the triangle the wrong way)
      if (d1 <= 0)
            return;

      // calculate the unnormalized end distance
      d2 = DotProduct(faceplanenormal, lineend) - faceplanedist;
      // if both are in front, there is no collision
      if (d2 >= 0)
            return;

      // from here on we know d1 is >= 0 and d2 is < 0
      // this means the line starts infront and ends behind, passing through it

      // calculate the recipricol of the distance delta,
      // so we can use it multiple times cheaply (instead of division)
      d = 1.0f / (d1 - d2);
      // calculate the impact fraction by taking the start distance (> 0)
      // and subtracting the face plane distance (this is the distance of the
      // triangle along that same normal)
      // then multiply by the recipricol distance delta
      f = d1 * d;
      // skip out if this impact is further away than previous ones
      if (f > trace->realfraction)
            return;
      // calculate the perfect impact point for classification of insidedness
      impact[0] = linestart[0] + f * (lineend[0] - linestart[0]);
      impact[1] = linestart[1] + f * (lineend[1] - linestart[1]);
      impact[2] = linestart[2] + f * (lineend[2] - linestart[2]);

      // calculate the edge normal and reject if impact is outside triangle
      // (an edge normal faces away from the triangle, to get the desired normal
      //  a crossproduct with the faceplanenormal is used, and because of the way
      // the insidedness comparison is written it does not need to be normalized)

      VectorSubtract(point2, point0, edge);
      CrossProduct(edge, faceplanenormal, edgenormal);
      if (DotProduct(impact, edgenormal) > DotProduct(point0, edgenormal))
            return;

      VectorSubtract(point0, point1, edge);
      CrossProduct(edge, faceplanenormal, edgenormal);
      if (DotProduct(impact, edgenormal) > DotProduct(point1, edgenormal))
            return;

      VectorSubtract(point1, point2, edge);
      CrossProduct(edge, faceplanenormal, edgenormal);
      if (DotProduct(impact, edgenormal) > DotProduct(point2, edgenormal))
            return;

      // store the new trace fraction
      trace->realfraction = bound(0, f, 1);

      // store the new trace plane (because collisions only happen from
      // the front this is always simply the triangle normal, never flipped)
      VectorNormalize(faceplanenormal);
      VectorCopy(faceplanenormal, trace->plane.normal);
      trace->plane.dist = DotProduct(point0, faceplanenormal);

      // calculate the normalized start and end distances
      d1 = DotProduct(trace->plane.normal, linestart) - trace->plane.dist;
      d2 = DotProduct(trace->plane.normal, lineend) - trace->plane.dist;

      // calculate a nudged fraction to keep it out of the surface
      // (the main fraction remains perfect)
      fnudged = (d1 - collision_impactnudge.value) / (d1 - d2);
      trace->fraction = bound(0, fnudged, 1);

      // store the new trace endpos
      // not needed, it's calculated later when the trace is finished
      //trace->endpos[0] = linestart[0] + fnudged * (lineend[0] - linestart[0]);
      //trace->endpos[1] = linestart[1] + fnudged * (lineend[1] - linestart[1]);
      //trace->endpos[2] = linestart[2] + fnudged * (lineend[2] - linestart[2]);
      trace->hitsupercontents = supercontents;
      trace->hitq3surfaceflags = q3surfaceflags;
      trace->hittexture = texture;
#endif
}

01541 typedef struct colbspnode_s
{
      mplane_t plane;
      struct colbspnode_s *children[2];
      // the node is reallocated or split if max is reached
      int numcolbrushf;
      int maxcolbrushf;
      colbrushf_t **colbrushflist;
      //int numcolbrushd;
      //int maxcolbrushd;
      //colbrushd_t **colbrushdlist;
}
colbspnode_t;

01555 typedef struct colbsp_s
{
      mempool_t *mempool;
      colbspnode_t *nodes;
}
colbsp_t;

colbsp_t *Collision_CreateCollisionBSP(mempool_t *mempool)
{
      colbsp_t *bsp;
      bsp = (colbsp_t *)Mem_Alloc(mempool, sizeof(colbsp_t));
      bsp->mempool = mempool;
      bsp->nodes = (colbspnode_t *)Mem_Alloc(bsp->mempool, sizeof(colbspnode_t));
      return bsp;
}

void Collision_FreeCollisionBSPNode(colbspnode_t *node)
{
      if (node->children[0])
            Collision_FreeCollisionBSPNode(node->children[0]);
      if (node->children[1])
            Collision_FreeCollisionBSPNode(node->children[1]);
      while (--node->numcolbrushf)
            Mem_Free(node->colbrushflist[node->numcolbrushf]);
      //while (--node->numcolbrushd)
      //    Mem_Free(node->colbrushdlist[node->numcolbrushd]);
      Mem_Free(node);
}

void Collision_FreeCollisionBSP(colbsp_t *bsp)
{
      Collision_FreeCollisionBSPNode(bsp->nodes);
      Mem_Free(bsp);
}

void Collision_BoundingBoxOfBrushTraceSegment(const colbrushf_t *start, const colbrushf_t *end, vec3_t mins, vec3_t maxs, float startfrac, float endfrac)
{
      int i;
      colpointf_t *ps, *pe;
      float tempstart[3], tempend[3];
      VectorLerp(start->points[0].v, startfrac, end->points[0].v, mins);
      VectorCopy(mins, maxs);
      for (i = 0, ps = start->points, pe = end->points;i < start->numpoints;i++, ps++, pe++)
      {
            VectorLerp(ps->v, startfrac, pe->v, tempstart);
            VectorLerp(ps->v, endfrac, pe->v, tempend);
            mins[0] = min(mins[0], min(tempstart[0], tempend[0]));
            mins[1] = min(mins[1], min(tempstart[1], tempend[1]));
            mins[2] = min(mins[2], min(tempstart[2], tempend[2]));
            maxs[0] = min(maxs[0], min(tempstart[0], tempend[0]));
            maxs[1] = min(maxs[1], min(tempstart[1], tempend[1]));
            maxs[2] = min(maxs[2], min(tempstart[2], tempend[2]));
      }
      mins[0] -= 1;
      mins[1] -= 1;
      mins[2] -= 1;
      maxs[0] += 1;
      maxs[1] += 1;
      maxs[2] += 1;
}

//===========================================

void Collision_TranslateBrush(const vec3_t shift, colbrushf_t *brush)
{
      int i;
      // now we can transform the data
      for(i = 0; i < brush->numplanes; ++i)
      {
            brush->planes[i].dist += DotProduct(shift, brush->planes[i].normal);
      }
      for(i = 0; i < brush->numpoints; ++i)
      {
            VectorAdd(brush->points[i].v, shift, brush->points[i].v);
      }
      VectorAdd(brush->mins, shift, brush->mins);
      VectorAdd(brush->maxs, shift, brush->maxs);
}

void Collision_TransformBrush(const matrix4x4_t *matrix, colbrushf_t *brush)
{
      int i;
      vec3_t v;
      // we're breaking any AABB properties here...
      brush->isaabb = false;
      brush->hasaabbplanes = false;
      // now we can transform the data
      for(i = 0; i < brush->numplanes; ++i)
      {
            Matrix4x4_TransformPositivePlane(matrix, brush->planes[i].normal[0], brush->planes[i].normal[1], brush->planes[i].normal[2], brush->planes[i].dist, brush->planes[i].normal);
      }
      for(i = 0; i < brush->numedgedirs; ++i)
      {
            Matrix4x4_Transform(matrix, brush->edgedirs[i].v, v);
            VectorCopy(v, brush->edgedirs[i].v);
      }
      for(i = 0; i < brush->numpoints; ++i)
      {
            Matrix4x4_Transform(matrix, brush->points[i].v, v);
            VectorCopy(v, brush->points[i].v);
      }
      VectorCopy(brush->points[0].v, brush->mins);
      VectorCopy(brush->points[0].v, brush->maxs);
      for(i = 1; i < brush->numpoints; ++i)
      {
            if(brush->points[i].v[0] < brush->mins[0]) brush->mins[0] = brush->points[i].v[0];
            if(brush->points[i].v[1] < brush->mins[1]) brush->mins[1] = brush->points[i].v[1];
            if(brush->points[i].v[2] < brush->mins[2]) brush->mins[2] = brush->points[i].v[2];
            if(brush->points[i].v[0] > brush->maxs[0]) brush->maxs[0] = brush->points[i].v[0];
            if(brush->points[i].v[1] > brush->maxs[1]) brush->maxs[1] = brush->points[i].v[1];
            if(brush->points[i].v[2] > brush->maxs[2]) brush->maxs[2] = brush->points[i].v[2];
      }
}

01669 typedef struct collision_cachedtrace_parameters_s
{
      dp_model_t *model;
      vec3_t end;
      vec3_t start;
      vec3_t mins;
      vec3_t maxs;
//    const frameblend_t *frameblend;
//    const skeleton_t *skeleton;
//    matrix4x4_t inversematrix;
      int hitsupercontentsmask;
      int type; // which type of query produced this cache entry
      matrix4x4_t matrix;
      vec3_t bodymins;
      vec3_t bodymaxs;
      int bodysupercontents;
}
collision_cachedtrace_parameters_t;

01688 typedef struct collision_cachedtrace_s
{
      qboolean valid;
      collision_cachedtrace_parameters_t p;
      trace_t result;
}
collision_cachedtrace_t;

static mempool_t *collision_cachedtrace_mempool;
static collision_cachedtrace_t *collision_cachedtrace_array;
static int collision_cachedtrace_firstfree;
static int collision_cachedtrace_lastused;
static int collision_cachedtrace_max;
static int collision_cachedtrace_sequence;
static int collision_cachedtrace_hashsize;
static int *collision_cachedtrace_hash;
static unsigned int *collision_cachedtrace_arrayfullhashindex;
static unsigned int *collision_cachedtrace_arrayhashindex;
static unsigned int *collision_cachedtrace_arraynext;
static unsigned char *collision_cachedtrace_arrayused;
static qboolean collision_cachedtrace_rebuildhash;

void Collision_Cache_Reset(qboolean resetlimits)
{
      if (collision_cachedtrace_hash)
            Mem_Free(collision_cachedtrace_hash);
      if (collision_cachedtrace_array)
            Mem_Free(collision_cachedtrace_array);
      if (collision_cachedtrace_arrayfullhashindex)
            Mem_Free(collision_cachedtrace_arrayfullhashindex);
      if (collision_cachedtrace_arrayhashindex)
            Mem_Free(collision_cachedtrace_arrayhashindex);
      if (collision_cachedtrace_arraynext)
            Mem_Free(collision_cachedtrace_arraynext);
      if (collision_cachedtrace_arrayused)
            Mem_Free(collision_cachedtrace_arrayused);
      if (resetlimits || !collision_cachedtrace_max)
            collision_cachedtrace_max = collision_cache.integer ? 128 : 1;
      collision_cachedtrace_firstfree = 1;
      collision_cachedtrace_lastused = 0;
      collision_cachedtrace_hashsize = collision_cachedtrace_max;
      collision_cachedtrace_array = (collision_cachedtrace_t *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(collision_cachedtrace_t));
      collision_cachedtrace_hash = (int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_hashsize * sizeof(int));
      collision_cachedtrace_arrayfullhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
      collision_cachedtrace_arrayhashindex = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
      collision_cachedtrace_arraynext = (unsigned int *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned int));
      collision_cachedtrace_arrayused = (unsigned char *)Mem_Alloc(collision_cachedtrace_mempool, collision_cachedtrace_max * sizeof(unsigned char));
      collision_cachedtrace_sequence = 1;
      collision_cachedtrace_rebuildhash = false;
}

void Collision_Cache_Init(mempool_t *mempool)
{
      collision_cachedtrace_mempool = mempool;
      Collision_Cache_Reset(true);
}

void Collision_Cache_RebuildHash(void)
{
      int index;
      int range = collision_cachedtrace_lastused + 1;
      int sequence = collision_cachedtrace_sequence;
      int firstfree = collision_cachedtrace_max;
      int lastused = 0;
      int *hash = collision_cachedtrace_hash;
      unsigned int hashindex;
      unsigned int *arrayhashindex = collision_cachedtrace_arrayhashindex;
      unsigned int *arraynext = collision_cachedtrace_arraynext;
      collision_cachedtrace_rebuildhash = false;
      memset(collision_cachedtrace_hash, 0, collision_cachedtrace_hashsize * sizeof(int));
      for (index = 1;index < range;index++)
      {
            if (collision_cachedtrace_arrayused[index] == sequence)
            {
                  hashindex = arrayhashindex[index];
                  arraynext[index] = hash[hashindex];
                  hash[hashindex] = index;
                  lastused = index;
            }
            else
            {
                  if (firstfree > index)
                        firstfree = index;
                  collision_cachedtrace_arrayused[index] = 0;
            }
      }
      collision_cachedtrace_firstfree = firstfree;
      collision_cachedtrace_lastused = lastused;
}

void Collision_Cache_NewFrame(void)
{
      if (collision_cache.integer)
      {
            if (collision_cachedtrace_max < 128)
                  Collision_Cache_Reset(true);
      }
      else
      {
            if (collision_cachedtrace_max > 1)
                  Collision_Cache_Reset(true);
      }
      // rebuild hash if sequence would overflow byte, otherwise increment
      if (collision_cachedtrace_sequence == 255)
      {
            Collision_Cache_RebuildHash();
            collision_cachedtrace_sequence = 1;
      }
      else
      {
            collision_cachedtrace_rebuildhash = true;
            collision_cachedtrace_sequence++;
      }
}

static unsigned int Collision_Cache_HashIndexForArray(unsigned int *array, unsigned int size)
{
      unsigned int i;
      unsigned int hashindex = 0;
      // this is a super-cheesy checksum, designed only for speed
      for (i = 0;i < size;i++)
            hashindex += array[i] * (1 + i);
      return hashindex;
}

static collision_cachedtrace_t *Collision_Cache_Lookup(int type, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, const matrix4x4_t *matrix, const matrix4x4_t *inversematrix, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask)
{
      int hashindex = 0;
      unsigned int fullhashindex;
      int index = 0;
      int range;
      int sequence = collision_cachedtrace_sequence;
      int *hash = collision_cachedtrace_hash;
      unsigned int *arrayfullhashindex = collision_cachedtrace_arrayfullhashindex;
      unsigned int *arraynext = collision_cachedtrace_arraynext;
      collision_cachedtrace_t *cached = collision_cachedtrace_array + index;
      collision_cachedtrace_parameters_t params;
      // all non-cached traces use the same index
      if ((frameblend && frameblend[0].lerp != 1) || (skeleton && skeleton->relativetransforms))
            r_refdef.stats.collisioncache_animated++;
      else if (!collision_cache.integer)
            r_refdef.stats.collisioncache_traced++;
      else
      {
            // cached trace lookup
            memset(&params, 0, sizeof(params));
            params.type = type;
            params.model = model;
            VectorCopy(bodymins, params.bodymins);
            VectorCopy(bodymaxs, params.bodymaxs);
            params.bodysupercontents = bodysupercontents;
            VectorCopy(start, params.start);
            VectorCopy(mins,  params.mins);
            VectorCopy(maxs,  params.maxs);
            VectorCopy(end,   params.end);
            params.hitsupercontentsmask = hitsupercontentsmask;
            params.matrix = *matrix;
            //params.inversematrix = *inversematrix;
            fullhashindex = Collision_Cache_HashIndexForArray((unsigned int *)&params, sizeof(params) / sizeof(unsigned int));
            //fullhashindex = Collision_Cache_HashIndexForArray((unsigned int *)&params, 10);
            hashindex = (int)(fullhashindex % (unsigned int)collision_cachedtrace_hashsize);
            for (index = hash[hashindex];index;index = arraynext[index])
            {
                  if (arrayfullhashindex[index] != fullhashindex)
                        continue;
                  cached = collision_cachedtrace_array + index;
                  //if (memcmp(&cached->p, &params, sizeof(params)))
                  if (cached->p.model != params.model
                   || cached->p.end[0] != params.end[0]
                   || cached->p.end[1] != params.end[1]
                   || cached->p.end[2] != params.end[2]
                   || cached->p.start[0] != params.start[0]
                   || cached->p.start[1] != params.start[1]
                   || cached->p.start[2] != params.start[2]
                   || cached->p.mins[0] != params.mins[0]
                   || cached->p.mins[1] != params.mins[1]
                   || cached->p.mins[2] != params.mins[2]
                   || cached->p.maxs[0] != params.maxs[0]
                   || cached->p.maxs[1] != params.maxs[1]
                   || cached->p.maxs[2] != params.maxs[2]
                   || cached->p.type != params.type
                   || cached->p.bodysupercontents != params.bodysupercontents
                   || cached->p.bodymins[0] != params.bodymins[0]
                   || cached->p.bodymins[1] != params.bodymins[1]
                   || cached->p.bodymins[2] != params.bodymins[2]
                   || cached->p.bodymaxs[0] != params.bodymaxs[0]
                   || cached->p.bodymaxs[1] != params.bodymaxs[1]
                   || cached->p.bodymaxs[2] != params.bodymaxs[2]
                   || cached->p.hitsupercontentsmask != params.hitsupercontentsmask
                   || cached->p.matrix.m[0][0] != params.matrix.m[0][0]
                   || cached->p.matrix.m[0][1] != params.matrix.m[0][1]
                   || cached->p.matrix.m[0][2] != params.matrix.m[0][2]
                   || cached->p.matrix.m[0][3] != params.matrix.m[0][3]
                   || cached->p.matrix.m[1][0] != params.matrix.m[1][0]
                   || cached->p.matrix.m[1][1] != params.matrix.m[1][1]
                   || cached->p.matrix.m[1][2] != params.matrix.m[1][2]
                   || cached->p.matrix.m[1][3] != params.matrix.m[1][3]
                   || cached->p.matrix.m[2][0] != params.matrix.m[2][0]
                   || cached->p.matrix.m[2][1] != params.matrix.m[2][1]
                   || cached->p.matrix.m[2][2] != params.matrix.m[2][2]
                   || cached->p.matrix.m[2][3] != params.matrix.m[2][3]
                   || cached->p.matrix.m[3][0] != params.matrix.m[3][0]
                   || cached->p.matrix.m[3][1] != params.matrix.m[3][1]
                   || cached->p.matrix.m[3][2] != params.matrix.m[3][2]
                   || cached->p.matrix.m[3][3] != params.matrix.m[3][3]
                  )
                        continue;
                  // found a matching trace in the cache
                  r_refdef.stats.collisioncache_cached++;
                  cached->valid = true;
                  collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence;
                  return cached;
            }
            r_refdef.stats.collisioncache_traced++;
            // find an unused cache entry
            for (index = collision_cachedtrace_firstfree, range = collision_cachedtrace_max;index < range;index++)
                  if (collision_cachedtrace_arrayused[index] == 0)
                        break;
            if (index == range)
            {
                  // all claimed, but probably some are stale...
                  for (index = 1, range = collision_cachedtrace_max;index < range;index++)
                        if (collision_cachedtrace_arrayused[index] != sequence)
                              break;
                  if (index < range)
                  {
                        // found a stale one, rebuild the hash
                        Collision_Cache_RebuildHash();
                  }
                  else
                  {
                        // we need to grow the cache
                        collision_cachedtrace_max *= 2;
                        Collision_Cache_Reset(false);
                        index = 1;
                  }
            }
            // link the new cache entry into the hash bucket
            collision_cachedtrace_firstfree = index + 1;
            if (collision_cachedtrace_lastused < index)
                  collision_cachedtrace_lastused = index;
            cached = collision_cachedtrace_array + index;
            collision_cachedtrace_arraynext[index] = collision_cachedtrace_hash[hashindex];
            collision_cachedtrace_hash[hashindex] = index;
            collision_cachedtrace_arrayhashindex[index] = hashindex;
            cached->valid = false;
            cached->p = params;
            collision_cachedtrace_arrayfullhashindex[index] = fullhashindex;
            collision_cachedtrace_arrayused[index] = collision_cachedtrace_sequence;
      }
      return cached;
}

void Collision_ClipToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontentsmask)
{
      float starttransformed[3], endtransformed[3];
      collision_cachedtrace_t *cached = Collision_Cache_Lookup(3, model, frameblend, skeleton, bodymins, bodymaxs, bodysupercontents, matrix, inversematrix, start, mins, maxs, end, hitsupercontentsmask);
      if (cached->valid)
      {
            *trace = cached->result;
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = trace->realfraction = 1;

      Matrix4x4_Transform(inversematrix, start, starttransformed);
      Matrix4x4_Transform(inversematrix, end, endtransformed);
#if COLLISIONPARANOID >= 3
      Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2], end[0], end[1], end[2], endtransformed[0], endtransformed[1], endtransformed[2]);
#endif

      if (model && model->TraceBox)
      {
            if(model->TraceBrush && (inversematrix->m[0][1] || inversematrix->m[0][2] || inversematrix->m[1][0] || inversematrix->m[1][2] || inversematrix->m[2][0] || inversematrix->m[2][1]))
            {
                  // we get here if TraceBrush exists, AND we have a rotation component (SOLID_BSP case)
                  // using starttransformed, endtransformed is WRONG in this case!
                  // should rather build a brush and trace using it
                  colboxbrushf_t thisbrush_start, thisbrush_end;
                  Collision_BrushForBox(&thisbrush_start, mins, maxs, 0, 0, NULL);
                  Collision_BrushForBox(&thisbrush_end, mins, maxs, 0, 0, NULL);
                  Collision_TranslateBrush(start, &thisbrush_start.brush);
                  Collision_TranslateBrush(end, &thisbrush_end.brush);
                  Collision_TransformBrush(inversematrix, &thisbrush_start.brush);
                  Collision_TransformBrush(inversematrix, &thisbrush_end.brush);
                  //Collision_TranslateBrush(starttransformed, &thisbrush_start.brush);
                  //Collision_TranslateBrush(endtransformed, &thisbrush_end.brush);
                  model->TraceBrush(model, frameblend, skeleton, trace, &thisbrush_start.brush, &thisbrush_end.brush, hitsupercontentsmask);
            }
            else // this is only approximate if rotated, quite useless
                  model->TraceBox(model, frameblend, skeleton, trace, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask);
      }
      else // and this requires that the transformation matrix doesn't have angles components, like SV_TraceBox ensures; FIXME may get called if a model is SOLID_BSP but has no TraceBox function
            Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, mins, maxs, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
      trace->fraction = bound(0, trace->fraction, 1);
      trace->realfraction = bound(0, trace->realfraction, 1);

      VectorLerp(start, trace->fraction, end, trace->endpos);
      // transform plane
      // NOTE: this relies on plane.dist being directly after plane.normal
      Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal);

      cached->result = *trace;
}

void Collision_ClipToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t mins, const vec3_t maxs, const vec3_t end, int hitsupercontents)
{
      collision_cachedtrace_t *cached = Collision_Cache_Lookup(3, model, NULL, NULL, vec3_origin, vec3_origin, 0, &identitymatrix, &identitymatrix, start, mins, maxs, end, hitsupercontents);
      if (cached->valid)
      {
            *trace = cached->result;
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = trace->realfraction = 1;
      // ->TraceBox: TraceBrush not needed here, as worldmodel is never rotated
      if (model && model->TraceBox)
            model->TraceBox(model, NULL, NULL, trace, start, mins, maxs, end, hitsupercontents);
      trace->fraction = bound(0, trace->fraction, 1);
      trace->realfraction = bound(0, trace->realfraction, 1);
      VectorLerp(start, trace->fraction, end, trace->endpos);

      cached->result = *trace;
}

void Collision_ClipLineToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, const vec3_t end, int hitsupercontentsmask, qboolean hitsurfaces)
{
      float starttransformed[3], endtransformed[3];
      collision_cachedtrace_t *cached = Collision_Cache_Lookup(2, model, frameblend, skeleton, bodymins, bodymaxs, bodysupercontents, matrix, inversematrix, start, vec3_origin, vec3_origin, end, hitsupercontentsmask);
      if (cached->valid)
      {
            *trace = cached->result;
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = trace->realfraction = 1;

      Matrix4x4_Transform(inversematrix, start, starttransformed);
      Matrix4x4_Transform(inversematrix, end, endtransformed);
#if COLLISIONPARANOID >= 3
      Con_Printf("trans(%f %f %f -> %f %f %f, %f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2], end[0], end[1], end[2], endtransformed[0], endtransformed[1], endtransformed[2]);
#endif

      if (model && model->TraceLineAgainstSurfaces && hitsurfaces)
            model->TraceLineAgainstSurfaces(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask);
      else if (model && model->TraceLine)
            model->TraceLine(model, frameblend, skeleton, trace, starttransformed, endtransformed, hitsupercontentsmask);
      else
            Collision_ClipTrace_Box(trace, bodymins, bodymaxs, starttransformed, vec3_origin, vec3_origin, endtransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);
      trace->fraction = bound(0, trace->fraction, 1);
      trace->realfraction = bound(0, trace->realfraction, 1);

      VectorLerp(start, trace->fraction, end, trace->endpos);
      // transform plane
      // NOTE: this relies on plane.dist being directly after plane.normal
      Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal);

      cached->result = *trace;
}

void Collision_ClipLineToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, const vec3_t end, int hitsupercontents, qboolean hitsurfaces)
{
      collision_cachedtrace_t *cached = Collision_Cache_Lookup(2, model, NULL, NULL, vec3_origin, vec3_origin, 0, &identitymatrix, &identitymatrix, start, vec3_origin, vec3_origin, end, hitsupercontents);
      if (cached->valid)
      {
            *trace = cached->result;
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = trace->realfraction = 1;
      if (model && model->TraceLineAgainstSurfaces && hitsurfaces)
            model->TraceLineAgainstSurfaces(model, NULL, NULL, trace, start, end, hitsupercontents);
      else if (model && model->TraceLine)
            model->TraceLine(model, NULL, NULL, trace, start, end, hitsupercontents);
      trace->fraction = bound(0, trace->fraction, 1);
      trace->realfraction = bound(0, trace->realfraction, 1);
      VectorLerp(start, trace->fraction, end, trace->endpos);

      cached->result = *trace;
}

void Collision_ClipPointToGenericEntity(trace_t *trace, dp_model_t *model, const frameblend_t *frameblend, const skeleton_t *skeleton, const vec3_t bodymins, const vec3_t bodymaxs, int bodysupercontents, matrix4x4_t *matrix, matrix4x4_t *inversematrix, const vec3_t start, int hitsupercontentsmask)
{
      float starttransformed[3];
      collision_cachedtrace_t *cached = Collision_Cache_Lookup(1, model, frameblend, skeleton, bodymins, bodymaxs, bodysupercontents, matrix, inversematrix, start, vec3_origin, vec3_origin, start, hitsupercontentsmask);
      if (cached->valid)
      {
            *trace = cached->result;
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = trace->realfraction = 1;

      Matrix4x4_Transform(inversematrix, start, starttransformed);
#if COLLISIONPARANOID >= 3
      Con_Printf("trans(%f %f %f -> %f %f %f)", start[0], start[1], start[2], starttransformed[0], starttransformed[1], starttransformed[2]);
#endif

      if (model && model->TracePoint)
            model->TracePoint(model, NULL, NULL, trace, starttransformed, hitsupercontentsmask);
      else
            Collision_ClipTrace_Point(trace, bodymins, bodymaxs, starttransformed, hitsupercontentsmask, bodysupercontents, 0, NULL);

      VectorCopy(start, trace->endpos);
      // transform plane
      // NOTE: this relies on plane.dist being directly after plane.normal
      Matrix4x4_TransformPositivePlane(matrix, trace->plane.normal[0], trace->plane.normal[1], trace->plane.normal[2], trace->plane.dist, trace->plane.normal);

      cached->result = *trace;
}

void Collision_ClipPointToWorld(trace_t *trace, dp_model_t *model, const vec3_t start, int hitsupercontents)
{
      collision_cachedtrace_t *cached = Collision_Cache_Lookup(1, model, NULL, NULL, vec3_origin, vec3_origin, 0, &identitymatrix, &identitymatrix, start, vec3_origin, vec3_origin, start, hitsupercontents);
      if (cached->valid)
      {
            *trace = cached->result;
            return;
      }

      memset(trace, 0, sizeof(*trace));
      trace->fraction = trace->realfraction = 1;
      if (model && model->TracePoint)
            model->TracePoint(model, NULL, NULL, trace, start, hitsupercontents);
      VectorCopy(start, trace->endpos);

      cached->result = *trace;
}

void Collision_CombineTraces(trace_t *cliptrace, const trace_t *trace, void *touch, qboolean isbmodel)
{
      // take the 'best' answers from the new trace and combine with existing data
      if (trace->allsolid)
            cliptrace->allsolid = true;
      if (trace->startsolid)
      {
            if (isbmodel)
                  cliptrace->bmodelstartsolid = true;
            cliptrace->startsolid = true;
            if (cliptrace->realfraction == 1)
                  cliptrace->ent = touch;
            if (cliptrace->startdepth > trace->startdepth)
            {
                  cliptrace->startdepth = trace->startdepth;
                  VectorCopy(trace->startdepthnormal, cliptrace->startdepthnormal);
            }
      }
      // don't set this except on the world, because it can easily confuse
      // monsters underwater if there's a bmodel involved in the trace
      // (inopen && inwater is how they check water visibility)
      //if (trace->inopen)
      //    cliptrace->inopen = true;
      if (trace->inwater)
            cliptrace->inwater = true;
      if ((trace->realfraction <= cliptrace->realfraction) && (VectorLength2(trace->plane.normal) > 0))
      {
            cliptrace->fraction = trace->fraction;
            cliptrace->realfraction = trace->realfraction;
            VectorCopy(trace->endpos, cliptrace->endpos);
            cliptrace->plane = trace->plane;
            cliptrace->ent = touch;
            cliptrace->hitsupercontents = trace->hitsupercontents;
            cliptrace->hitq3surfaceflags = trace->hitq3surfaceflags;
            cliptrace->hittexture = trace->hittexture;
      }
      cliptrace->startsupercontents |= trace->startsupercontents;
}

void Collision_ShortenTrace(trace_t *trace, float shorten_factor, const vec3_t end)
{
      // now undo our moving end 1 qu farther...
      trace->fraction = bound(trace->fraction, trace->fraction / shorten_factor - 1e-6, 1); // we subtract 1e-6 to guard for roundoff errors
      trace->realfraction = bound(trace->realfraction, trace->realfraction / shorten_factor - 1e-6, 1); // we subtract 1e-6 to guard for roundoff errors
      if(trace->fraction >= 1) // trace would NOT hit if not expanded!
      {
            trace->fraction = 1;
            trace->realfraction = 1;
            VectorCopy(end, trace->endpos);
            memset(&trace->plane, 0, sizeof(trace->plane));
            trace->ent = NULL;
            trace->hitsupercontentsmask = 0;
            trace->hitsupercontents = 0;
            trace->hitq3surfaceflags = 0;
            trace->hittexture = NULL;
      }
}

Generated by  Doxygen 1.6.0   Back to index